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Axisymmetric Finite Elasticity

1. The Two-Dimensional Eigenproblem

In cylindrical coordinates (r, z, 8) for axisymmetric problems, tensorial quantities which reside in
the rz—plane are two-dimensional Cartesian tensors.

Consider a symmetric, second-order tensor in the rz—plane A such that

A A A 0
A:[oo 01]' AE = | Mo ]’ AE = wAyT | A=yTAEy 1.1
P o A Ay YT Ay (1.1)
where
_ [ cosa sina E _
¥ = [—sina cosa] ’ e =vije; - (1.2)

In eqns. (1.1) and (1.2), A; are the eigenvalues of A, ef are the corresponding eigenvectors, and e; are the
base vectors in the rz—plane, i.e., this is the standard two-dimensional eigenproblem. Using the third of
eqns. (1.1),

AE =0 =1(A —Ago)sin2a + Ag; cos2a =« =1tan_1(—2AO1 ) (1.3)
01 11 ~ Aoo 01 , :
2 2 Ago — A1

which solves for the eigenvectors. The third of eqns. (1.1) also yields the eigenvalues
1 1 .
AO = AOO = E (AOO + All) - E (A11 - Aoo) cos2a + A01 sin 2a )
1 1 .
).1 = All = E (AOO + All) + E (A11 - Aoo) cos2a — A01 sin2a . (1.4)
In a numerical method, the gradients of the eigenproblem with

respect to A;; are required. Consequently, differentiation of the last of
eqns. (1.3) gives

R da Aoy
2A 01 = - 2 2 )
0400 (Ago — A11)* + 445,
2a = , (1.5)
0401 (Ago — A11)* + 445,
Ag=Ax
Figure 1. Right triangle da Aoy
corresponding to 0411 (Agg—A11)% + 442,
the last of
eqns. (1.3).
Next, using the right triangle in Fig. 1 above, eqns. (1.5) may be simplified as
da  sin2a da  cos2a Jda _ sin2a (1.6)
9400 2R ' 0401 R ' 04;; 2R ' '
where
R = \[(Aoo — A11)? + 445, (1.7)
Now, differentiating eqns. (1.4) with respect to Ay;, and using the first of eqns. (1.3), one obtains
610_1(1+ 2a) 6/10_1(1 20) _ sin2
Ay 2 cos2a) , A, 2 cos2a) , 6A01_Sm a,
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6'11—1(1 2a) 6'11—1(1+ 2a) O _ iz 1.8
Ay 2 cos2a) , oA, 2 cos2a) , Ay sin 2a . (1.8)
Finally, differentiating the eigenvectors (1.2) gives
0ij _ [—sina cosa ] 0Yij _ 9vi; Oa (1.9)
doa —cosa —sina 04y, Oa 0Ay "’ '

where da /0 Ay, are as per eqn. (1.6). Thus, the gradients of the eigenproblem are given by eqns. (1.8)
and (1.9).

2. Two-Dimensional Strain Measures

The Polar Decomposition Theorem states that
F=VR, (2.1

where F is the deformation gradient, V is the (symmetric) left stretch tensor (with positive eigenvalues),
and R is the rotation tensor. Consider

B=FFT=VRRTV=VIV=VV = V=+B. (2.2)
The square root is calculated by way of the two-dimensional eigenproblem, viz.,
B B A O
B=[°° 01], BE=[° ] BE =yByT , 2.3
Boi Bix 0 A vEY 23)

so that
A 0
VEz[‘/—" ] ) V=yTVvEy . 2.4
0 /L 24)
For a numerical method, the gradients dV;;/9F,, are needed. Consequently, differentiation of
B =VV gives
aBU
qu = Iikqukj + Viklkqu ) (25)

where Iy is the fully symmetric fourth-order identity tensor, i.e.,

1
Lijr = 5 (661 + 6xc6i1) (2.6)

and §;; is the two-dimensional identity matrix (or Kronecker delta). But, dV;;/ 9By, is required, which
satisfies the inverse relation

0B;; oV,
T 2.7
Vi 0B

and which can be written out in the matrix form

oo Vo, OVi; || 0By 9Boy 0By
26801 0By, _0Boy || 0Vyy Vo Vo, [1 0 0]

4 2 =

(2.8)
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Thus, the calculation of dV;;/9 By, amounts to inverting a 3 X 3 matrix. Next, differentiation of B = FF T

yields

aE,, ~ Cwhia  Fialjp - (2.9)

Finally, by the Chain Rule,
dViy;  0Vy; 0By
0F,; 0By 0Fy,

(2.10)

For finite elasticity, the most appropriate strain measure is the logarithmic (or true) strain &,
defined by

e=InV. (2.11)
Once again, the logarithm is calculated via the two-dimensional eigenproblem. Thus,
Voo Vm] g_[A O ] E T
V= [ 2 . VE=yvyT, 2.12
Vor Vas 0 A vy (212)
with
InA 0
E _ 0 — T oE
€ —[ 0 ln/ll]' e=yY Y . (2.13)
The gradients ¢y /3,4 are obtained by differentiating the second of eqns. (2.13), viz.,
de _ 0% ik 0
= g+ eE ey + ey =L (2.14)
Wpq g 7" VO ™ IO,
where
1 94,
asf | 2,0V,
y _| 0" pq 1 a3 . (2.15)
Vg 0 104
A1 0Vpq

Note that the derivatives dA;/3V,q and 01;;/ 9V}, are listed in, respectively, eqns. (1.8) and (1.9) with
Vij replacing A;;.

3. Axisymmetric Strain Measures

For axisymmetric problems in cylindrical coordinates (r, z, 8), the deformation gradient
component Fgg = F,, = 1 + u,./r, where u, is the radial displacement, and r is the radial coordinate in
the undeformed configuration. Also, any derivatives with respect to 6 are zero. Notwithstanding, for
axisymmetric problems, the deformation gradient F and left stretch tensor V are of the form

Foo For O Voo Vo1 0O
F=|Fo F1 0], V=|Vo1 Vi1 O (3.1
0 0 Fy 0 0 Fy

Note that the formulas for V;; (i, j) € (0,1) are as given above in eqn. (2.4). Also, the formulas for
dVij/0F,q (i,),p,q) € (0,1) are as per eqn. (2.10). All other values of dV;;/dF,, are zero, except for
asz/aFZZ = 1

As for the logarithmic strain,
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€o €1 0
E = 801 811 0 , 822 = ln VZZ = ln F22 . (32)
0 0 &y

As before, the formulas for €;; (i, j) € (0,1) are given by the two-dimensional case, ¢f., eqn. (2.13), and
the derivatives dg;;/0V,q (i,j,0,q) € (0,1) are as per eqn. (2.14). All other d¢;;/dV},, are zero, except
for aszz/aVZZ = 1/V22.

4. Uniaxial Finite Elastic Response

Figure 2 below shows the uniaxial stress-strain curve for vulcanized rubber. The blue plotted
points in the figure are the experimental data of Treloar (1940), see the “Herve Marand Rubber Elasticity
Lecture 17” (eng . uc . edu). While the author is not quite sure of the exact meaning of o and ¢ in the
figure, herein they will be interpreted as being true stress and true (or logarithmic) strain. The red curve in
the figure is a piecewise cubic fit to the data, which fit is constructed as follows. The e—axis is broken into
n subintervals, the ith one of which is depicted below in Fig. 3. The normalized coordinate ¢ € (—1,1) in
the figure is

i+1 _ i

2e — ¢ £ ) ;
&= — L=gtl—¢gt, (4.1)
Now, in each subinterval i € (0,n — 2), the uniaxial stress is written as
o =a’ct +a'm! + a?o*t + admitt (4.2)
i
-1 1 —¢
o L
2 - ) —
Ef EJ+1
g /n Figure 3. Normalized subinterval.
L=
N where, e.g., m! is the slope of the stress-strain
2 g ] curve at point { in Fig. 3, and
b 1
a® 21(2_35-‘_53) ’
2 e L
) o] at=c(1-§-8+8),
-~ s 8
- hd 1
odel L I a?=-(2+38-¢&%), (4.3)
000 050 1.00 150 2.00 4
& L
al =§(—1—f+§2+§3) :
Figure 2. Stress-strain data for vulcanized rubber
as explained in the text. The derivative of eqn. (4.2) is
do o0 i1 iy 2 ity 3,041
Fri azo'+a,m +azc" +a,mT, (4.4)

with
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3 1
0o _ > (_ 2 1 _ 2 (_1_ 2
a@=or(-1+87),  ab=7(-1-26+3¢%),

G=oo (=€),  al=g(-1+26436). (+5)

Finally, for the last subinterval i = n — 1 (i.e., for € > £™~1), the response is taken as linear, viz.,

Es (psi)

da_
de

Thus, the red curve in Fig. 2 above is constructed with n = 3 and the constants

o=m"1(e—e" )+, mn1, (4.6)

=0, el=15, €2 =19
d%=0psi, ol =200psi, 02 =460 psi , 4.7)
m°® =230 psi , m! =260 psi , m? = 1570 psi .

L=
(=]
¥ Additionally, the secant modulus is
o
. Es=—, (4.8)
] 7 €
which is graphed at right in Fig. 4. Finally,
differentiation of eqn. (4.8) yields
L=
LTS dES_l(da E) 49
,/ de  e\de /- (4-9)
Pl L
3
(=]
0.00  0.50 1.00 1.50 2.00

Figure 4. The secant modulus Ej.

5. Multiaxial Response and Stress Measures

Unlike in the previous sections, here the tensor indices range over three dimensions, i.e., (0,1,2)

or (r,z,80), even though the strain components €y, = &9 = &2 = &1 = 0, ¢f,, the first of eqns. (3.2).

Consider a state of tensile uniaxial stress 0,, and uniform deformation so that the strains are ¢,

and &, = ggg = —V§,,, Where v is Poisson’s ratio. Now, the effective strain € defined by
_ €ij€ij
&= 5.1
1+ 2v? G-D

is such that, in this case, € corresponds to the major strain component &,,. Consequently, eqn. (5.1) can be
used to generalize the uniaxial response of Sec. 4 to general states of deformation.
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For linear elasticity, the stresses 0;; are related to the strains by Hooke’s Law, i.e.,

=0 Cli = e 1
0ij = Cijri€rt » T 1+ v)A-2v) -

where E is Young’s modulus. Consistent with the axisymmetric strain state (3.2) and with eqn. (5.2), the
axisymmetric stress state is also of the form

0o 0Oo1 O
o=|001 011 0 [. (5:3)
0 0 o0y

ZV)Iijkl + V6ij6kl ] ) (52)

For axisymmetric finite elasticity, the true stress components o;; also follow eqn. (5.3).

A reasonable extension of eqn. (5.2) to nonlinear elasticity is to use

E
0ij = Cijki&ki » Cijri = A+ v)(sl ~ ) [ (1 —2v)L;j + v6;i6k | (54)

where the secant modulus E; = d /&, ¢f., eqn. (4.8). In other words, ¢ = o(¢€) in Sec. 4 is generalized to
o = d(&). Ineqn. (5.4), 0;; are the components of the true stress, and &, are the components of the

logarithmic strain. Also herein, v is assumed to be constant (and for the numerical calculations presented
later in Sec. 10, v = 0.45 is used). Finally, it is worth noting that the stress component g;; is the force per

unit deformed area acting in the j—direction of the deformed configuration on a (differential) face whose
normal is in the i—direction of the deformed configuration.

In the numerical calculations which follow later, the derivatives do; ] / ae,,q are needed. So,
differentiation of eqn. (5.1) gives

0& Epq

depg  (L+2v2)E " (5.5)
Next,

0E; dE; 0¢ 1 (da E) 56

de,g A2 05,y (1+202)@2\dg %) P (56)

cf., eqn. (4.9). Now,
dCijkl 1 dO' aCijkl dCijkl as_ 1 dO'
Y= = —( s) ijkl = (

— _E = = —_—
dé o\ dé 0epq dé dgpq (1+2vH)oé\dE

- ES) Cijklgpq . (57)

Finally, differentiation of the first of eqns. (5.4) yields

% = Cijpqg + %skl , (5.8)
so that via the second of eqns. (5.7),

daj; 1 do

qu = Cijpg * (1+ 21/2)05‘( dg ES) %1fpa (5.9)

Turning attention now to the nominal stress N;;, which component is the force per unit
undeformed area acting on the face whose normal is in the i—direction in the undeformed configuration,
with the force acting in the j—direction of the deformed configuration. The nominal stress is given by
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Nij = (detF)Fjlay; . (5.10)
Note that, for axisymmetric problems, N additionally is of the form
Noo No1 0
N = N]_O N11 O (5'11)
0 0 Ny,
Now, for square matrices in general,
d(det A) _ 0Ag 1,
oA, = (detA)4;T , > A;q = —A Agic - (5.12)
Thus, with these, the derivative of eqn. (5.10) is
aNU aO'k i
— = F-IN;; — F7;'N,; + (det F)F' —2 , (5.13)
9F,q qp Vij ip Vaj k 9F,q
where, by the Chain Rule,
aO'kj . aO'kj aemn aVrS (514)

0F,; 0&mpn Vs 0F,q
6. The Principle of Virtual Work

Here we revert to having the tensor indices range over (0,1) or (r, z). Notwithstanding, for
axisymmetric problems, equilibrium, in terms of the nominal stress, is
11 Nyg — N.
Nii+fi=0, -=—[ 00 22], 6.1

i + 1, =2 6.1)
where the comma denotes differentiation with respect to the coordinates in the undeformed configuration,
and r is the radial coordinate in the undeformed configuration. Now, multiply eqn. (6.1) by a once
differentiable vector field u; (the virtual displacement) to obtain

u;Nj;; tuifi=0. (6.2)
By the product rule of differentiation (u] Nji)'j = u; ;Nj; + u; Nj; j, which when put into eqn. (6.2) yields
wi Ny —uif; = (u%kNji)'j : (6.3)
Next, integrate eqn. (6.3) over the volume of the body V, and use the Divergence Theorem to get
ju;]-NﬁdV — fuffidV = fu;-“Tl-dS , (6.4)
14 4 s

which is the Principle of Virtual Work. In eqn. (6.4), S is the bounding surface of the body, and T; = n;Nj;
is the nominal traction vector (n is the outward-pointing unit normal vector on S).

Introduce the finite element nodal shape functions S’, and interpolate the virtual displacement
through the element via

* ol xl * ol *I
u; = S u; , ul-,]- = S’jui , (65)

where u;! are the nodal values of the virtual displacement. With these interpolations, eqn. (6.4) becomes
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u;! f SENdV — ! f Sifidv = u}! f SITds (6.6)
|74 |4 S

or since u;” is arbitrary,

fsgzvﬁdv— fS’fidV = fS’TidS : (6.7)
|4 14 S

Equation (6.7) is the basis of the finite element method.
7. The Four-Noded Isoparametric Finite Element

At left, in Fig. 5, is shown the four-noded finite element in
£ &—space, where &; € (—1,1). With

F@O=50-9, =30+, @D

the four shape functions S’ are given by the tensor product

: SO= @) St = @G
=L@, S =L@ . 02

The mapping to X—space is accomplished via

Figure 5. Four-noded element L
in &-space. xi =S8x; , (7.3)

where (xg,x;) = (r,z) and x/ are the nodal coordinates. The differential of eqn. (7.3) is

dxi = Aigdée At = g:f =Shxl, A =Agddx, 4G = % - (7.4)
By the chain rule and eqns. (7.4), the gradients of the shape functions in x—space are

sh=stAgt . (7.5)
Also consistent with eqns. (7.4),

dAX = drdz = (det A)dA?% , dV = 2nrdrdz = 2nr(det A)dA? , dAd = d&,dé;, . (7.6)
Thus, volume integrals are transformed as

11
j( )dv = -U ( )2nr(detA) déydé; . (7.7)
14 -1-1

In a finite element program, the integration on the right side of eqn. (7.7) is performed numerically with
the 3—point Gauss-Legendre quadrature rule, which rule integrates a fifth-order polynomial exactly.

8. Linear Elastic Finite Element Equations

The initial guess for the solution to the first nonlinear load step is a linear elastic solution. For
linear elasticity then, eqn. (6.7) is
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lyoygy— 0O
fsfjaﬁdV—fsfﬁdV = fS’TidS . f =;[ 00001 22] . (8.1)
|74 |74 S

Now, since the strain component €,, = €99 = (1/7)u,., write Hooke’s Law (5.2) as
— 0 1o _ 0 1o
0ij = CijiqUir + ;Cijzzur ’ 022 = CoopUyk + ;szzzur . (8.2)

Next, interpolate the displacement field through the element via
u
=Sl , wy =Siu uy=u,=[s/ 0][ 3]=T/u{, (8.3)
Lt
where ul] are the nodal displacements. With the interpolations (8.3), the first of eqns. (8.2) becomes

1
_A]lul ) A]]Lz C]lle] +- szzT] (8.4)

Similarly, the vector f; may be written as
1 1
- (Coort = CZOZkI)S{c t3 (Cgozz — C90)T/

fi=Bul, Bj= . (8.5)
COlle + szzT

Substitution of eqns. (8.4) and (8.5) into eqn. (8.1) yields the element stiffness relation for axisymmetric
linear elasticity, viz.,

Klul =f, Kk]= f (sial,—s'Bj)av,  ff= f SIT,dS . (8.6)
4 s
9. Nonlinear Elastic Finite Element Equations
Equation (6.7) is the residual of the nonlinear system, viz.,
= fojNﬁdV— fS’fidV—fslTidS =0. (9.1)

v v s
Equation (9.1) is solved with Newton-Raphson iteration, the procedure of which is
or!

Ju

1 1 im 1
Jidu =—r!, Pul =ul + i, g =—5, (9.2)

where impul] is an improved guess to the nodal displacements, and ]lIl] is the Jacobian of the system. So,

differentiation of eqn. (9.1) gives the Jacobian

ON;;
Ji = Jsg - z dV—j v . 9.3)
%4

u; J aul

Now, for the axisymmetric deformation, the deformation gradient is
1
Fij =6 +ugj, Fp, =1 +;u0 ) (9.4)

cf., the first of eqns. (3.1). Next, interpolate the displacement field through the element via

10
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— J —cl,,J —7l ]
w =Sy, Uy = Sy u =Ty , (9.5)

where ul] are the nodal displacements, and where Tl] is defined above in the third of eqns. (8.3). Thus,

putting the interpolations (9.5) into eqns. (9.4), one obtains

1
Fi =08y +Siul ,  Fp=1+ ;T/ul] . (9.6)
Differentiation of eqns. (9.6) then yields
JF, JF. 1
pq ] 22 b
— = , —=-T/ . 9.7
au{ et au{ rt 7

Next, we have the derivatives

dN;; _ ON;; 0F,,  ONj; 0F;, afi _ 0f; 0F,q ~ 0f; 0Fy; 9.8)
oul  0Fq oul  OFx gul oul  0Fyq oul  0Fy; ou/
Substitution of eqns. (9.7) into the first of eqns. (9.8) gives
Wi = Mgy LNy (9.9)
au{ T 0Fy " roF,,
Similarly, substitute eqns. (9.7) into the second of eqns. (9.8) to obtain
l(aNoo _ 6N22) j 1 (aNoo _ 6N22> 7/
afl — B] _ T aFlk aFlk k TZ anz aFZZ L (9 10)
oul -l 10Noy ; 1 0Noy '
T aFlk ok TZ 6F22 L
Finally, with eqns. (9.9) and (9.10), the Jacobian (9.3) becomes
Ji = j (stal, —s'B))av . (9.11)
14
When performing the iterations, a load step was considered as being converged when all the
nodal values Aul] satisfied
|au]| < 107* max|u/| . (9.12)

10. Numerical Example — Necking and Drawdown of a Uniaxial Tension Specimen

The uniaxial tension specimen analyzed is a right circular cylinder of length 2L and radius R,
where L = 3 in and R, = 0.25 in. To initiate necking and drawdown, the radius of the specimen is taken
as

Rz%[Z—f—fcos(%)], (10.1)

with f = 0.05. In other words, at z = L, the radius is R = R, and at z = 0, the radius is R = (1 — f)R,
= 0.95R,,. The midplane of the specimen is located at z = 0, and due to symmetry, only the upper half is
analyzed numerically.

The grid of nodes used is shown below in Fig. 6. The grid spans the area r € (0,R) X z € (0, L),
and it consists of a 6 X 181 = 1086 array of nodes, and a 5 X 180 = 900 array of elements.

11
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The boundary conditions for the problem are
u,=0onr=20, u,=0onz=0, u,=Uonz=1. (10.2)

The load stepping history used is shown below in the table, where U is in inches. For the first load step 0,
the initial guess to the nonlinear solution is a linear elastic solution, and then iterations are used to achieve
equilibrium for the nonlinear problem. For subsequent load steps, the initial guess to the solution is the
solution from the previous load step scaled to fit the boundary conditions for the current load step.
Necking starts to occur around U = 1.5 in, and after that, steps of size AU = 0.1 in were used. For this
load step size, approximately 4 to 6 iterations were required to obtain equilibrium for each step.

step 0 1 2 3 4 5 6 7 8 9 10 11
U 0.5 1.0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 23 24

12 13 14 15 16 17 18 19 20 21 22 23 24
2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 33 34 3.5 3.6 3.7

25 26 27 28 29 30 31 32
3.8 3.9 4.0 4.1 4.2 43 4.4 4.5

Figures 7 through 9 below show the deformed grid at various load levels. Note that the Figs. 6
through 9 all possess the same scale. As Fig. 7 shows, drawdown has initiated by the time U = 2.0 in is
reached. Figures 8 and 9, at load levels U = 3.3 in and U = 4.5 in, respectively, show the steady state
propagation of the drawing.

Figure 6. Undeformed tension specimen. Figure 7. Tension specimen at U = 2.0 in.

12
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Figure 8. Tension specimen at U = 3.3 in. Figure 9. Tension specimen at U = 4.5 in.

Figures 10 and 11 below show the true strain component &,, and true stress component g,
calculated at the centers of the elements whose left boundaries are at v = 0. The load level is U = 4.5 in,
and the Z—coordinate in the figures is in the undeformed configuration. The transition region between
drawn and undrawn material is highly evident.

i g
- 13
.
\ ] ——
N
n
g \ i \
- - \
N [
3 \ < <
\ 8 \
3 \ \
= N
3
8
o o
0.00 1.00 2.00 3.00 0.00 1.00 2.00 3.00
Z(in) Z(in)
Figure 10. Strain component €., at U = 4.5 in. Figure 11. Stress component g,, at U = 4.5 in.

11. Closing Remarks
The major advantage of doing the calculations in two dimensions is that the eigenproblems in

Secs. 1 through 3 are solved in closed form, which results in a highly reliable, and quickly executing,
numerical method.
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