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1. The Two-Dimensional Eigenproblem 
 

In cylindrical coordinates (𝑟, 𝑧, 𝜃) for axisymmetric problems, tensorial quantities which reside in 

the 𝑟𝑧–plane are two-dimensional Cartesian tensors. 

 

 Consider a symmetric, second-order tensor in the 𝑟𝑧–plane 𝐀 such that 

𝐴 = [ 
𝐴00 𝐴01

𝐴01 𝐴11
 ]  ,          𝐴𝐸 = [ 

𝜆0 0
0 𝜆1

 ]  ,          𝐴𝐸 = 𝜓𝐴𝜓𝑇  ,          𝐴 = 𝜓𝑇𝐴𝐸𝜓  ,              (1.1) 

where 

𝜓 = [ 
cos 𝛼 sin 𝛼

− sin𝛼 cos 𝛼
 ]  ,          𝐞𝑖

𝐸 = 𝜓𝑖𝑗𝐞𝑗   .                                                                                     (1.2) 

In eqns. (1.1) and (1.2), 𝜆𝑖 are the eigenvalues of 𝐀, 𝐞𝑖
𝐸 are the corresponding eigenvectors, and 𝐞𝑖 are the 

base vectors in the 𝑟𝑧–plane, i.e., this is the standard two-dimensional eigenproblem. Using the third of 

eqns. (1.1), 

𝐴01
𝐸 = 0 =

1

2
(𝐴11 − 𝐴00) sin 2𝛼 + 𝐴01 cos2𝛼      ⇒      𝛼 =

1

2
tan−1 ( 

2𝐴01

𝐴00 − 𝐴11
 )  ,         (1.3) 

which solves for the eigenvectors. The third of eqns. (1.1) also yields the eigenvalues 

𝜆0 = 𝐴00
𝐸 =

1

2
(𝐴00 + 𝐴11) −

1

2
(𝐴11 − 𝐴00) cos 2𝛼 + 𝐴01 sin 2𝛼  ,                                                    

𝜆1 = 𝐴11
𝐸 =

1

2
(𝐴00 + 𝐴11) +

1

2
(𝐴11 − 𝐴00) cos 2𝛼 − 𝐴01 sin2𝛼  .                                        (1.4) 

 

 

          In a numerical method, the gradients of the eigenproblem with 

respect to 𝐴𝑖𝑗 are required. Consequently, differentiation of the last of 

eqns. (1.3) gives 

𝜕𝛼

𝜕𝐴00
= −

𝐴01

(𝐴00 − 𝐴11)
2 + 4𝐴01

2   ,                                                

𝜕𝛼

𝜕𝐴01
=

𝐴00 − 𝐴11

(𝐴00 − 𝐴11)
2 + 4𝐴01

2   ,                                        (1.5) 

Figure 1. Right triangle 

               corresponding to 

               the last of 

               eqns. (1.3). 

𝜕𝛼

𝜕𝐴11
=

𝐴01

(𝐴00 − 𝐴11)
2 + 4𝐴01

2   .                                                   

 

Next, using the right triangle in Fig. 1 above, eqns. (1.5) may be simplified as 

𝜕𝛼

𝜕𝐴00
= −

sin2𝛼

2𝑅
  ,          

𝜕𝛼

𝜕𝐴01
=

cos 2𝛼

𝑅
  ,          

𝜕𝛼

𝜕𝐴11
=

sin2𝛼

2𝑅
  ,                                             (1.6) 

where 

𝑅 = √(𝐴00 − 𝐴11)
2 + 4𝐴01

2   .                                                                                                           (1.7) 

Now, differentiating eqns. (1.4) with respect to 𝐴𝑘𝑙, and using the first of eqns. (1.3), one obtains 

𝜕𝜆0

𝜕𝐴00
=

1

2
(1 + cos 2𝛼)  ,          

𝜕𝜆0

𝜕𝐴11
=

1

2
(1 − cos2𝛼)  ,          

𝜕𝜆0

𝜕𝐴01
= sin2𝛼  ,                            
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𝜕𝜆1

𝜕𝐴00
=

1

2
(1 − cos 2𝛼)  ,          

𝜕𝜆1

𝜕𝐴11
=

1

2
(1 + cos 2𝛼)  ,          

𝜕𝜆1

𝜕𝐴01
= −sin 2𝛼  .          (1.8) 

Finally, differentiating the eigenvectors (1.2) gives 

𝜕𝜓𝑖𝑗

𝜕𝛼
= [ 

− sin 𝛼 cos𝛼
− cos𝛼 − sin𝛼

 ]  ,          
𝜕𝜓𝑖𝑗

𝜕𝐴𝑘𝑙
=

𝜕𝜓𝑖𝑗

𝜕𝛼

𝜕𝛼

𝜕𝐴𝑘𝑙
  ,                                                       (1.9) 

where 𝜕𝛼 𝜕𝐴𝑘𝑙⁄  are as per eqn. (1.6). Thus, the gradients of the eigenproblem are given by eqns. (1.8) 

and (1.9). 

 

2. Two-Dimensional Strain Measures 
 

 The Polar Decomposition Theorem states that 

𝐹 = 𝑉𝑅  ,                                                                                                                                         (2.1) 

where 𝐹 is the deformation gradient, 𝑉 is the (symmetric) left stretch tensor (with positive eigenvalues), 

and 𝑅 is the rotation tensor. Consider 

𝐵 = 𝐹𝐹𝑇 = 𝑉𝑅𝑅𝑇𝑉 = 𝑉𝐼𝑉 = 𝑉𝑉     ⇒      𝑉 = √𝐵  .                                                          (2.2) 

The square root is calculated by way of the two-dimensional eigenproblem, viz., 

𝐵 = [ 
𝐵00 𝐵01

𝐵01 𝐵11
 ]  ,          𝐵𝐸 = [ 

𝜆0 0
0 𝜆1

 ]  ,          𝐵𝐸 = 𝜓𝐵𝜓𝑇  ,                                      (2.3) 

so that 

𝑉𝐸 = [ 
√𝜆0 0

0 √𝜆1

 ]   ,          𝑉 = 𝜓𝑇𝑉𝐸𝜓  .                                                                            (2.4) 

 For a numerical method, the gradients 𝜕𝑉𝑖𝑗 𝜕𝐹𝑝𝑞⁄  are needed. Consequently, differentiation of 

𝐵 = 𝑉𝑉 gives 
𝜕𝐵𝑖𝑗

𝜕𝑉𝑝𝑞
= 𝐼𝑖𝑘𝑝𝑞𝑉𝑘𝑗 + 𝑉𝑖𝑘𝐼𝑘𝑗𝑝𝑞  ,                                                                                                     (2.5) 

where 𝐼𝑖𝑗𝑘𝑙 is the fully symmetric fourth-order identity tensor, i.e., 

𝐼𝑖𝑗𝑘𝑙 =
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙)  ,                                                                                                       (2.6) 

and 𝛿𝑖𝑗 is the two-dimensional identity matrix (or Kronecker delta). But, 𝜕𝑉𝑖𝑗 𝜕𝐵𝑘𝑙⁄  is required, which 

satisfies the inverse relation 

𝜕𝐵𝑖𝑗

𝜕𝑉𝑘𝑙

𝜕𝑉𝑘𝑙

𝜕𝐵𝑚𝑛
= 𝐼𝑖𝑗𝑚𝑛  ,                                                                                                                  (2.7) 

and which can be written out in the matrix form 

[
 
 
 
 
 
 

 2

𝜕𝐵00

𝜕𝑉00
2

𝜕𝐵00

𝜕𝑉01

𝜕𝐵00

𝜕𝑉11

𝜕𝐵01

𝜕𝑉00
4

𝜕𝐵01

𝜕𝑉01
2

𝜕𝐵01

𝜕𝑉11

𝜕𝐵11

𝜕𝑉00
2

𝜕𝐵11

𝜕𝑉01

𝜕𝐵11

𝜕𝑉11

 

]
 
 
 
 
 
 

 

[
 
 
 
 
 
 

 

𝜕𝑉00

𝜕𝐵00

𝜕𝑉00

𝜕𝐵01

𝜕𝑉00

𝜕𝐵11

𝜕𝑉01

𝜕𝐵00

𝜕𝑉01

𝜕𝐵01

𝜕𝑉01

𝜕𝐵11

𝜕𝑉11

𝜕𝐵00

𝜕𝑉11

𝜕𝐵01

𝜕𝑉11

𝜕𝐵11

 

]
 
 
 
 
 
 

= [ 
1 0 0
0 1 0
0 0 1

 ] .                         (2.8) 
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Thus, the calculation of 𝜕𝑉𝑖𝑗 𝜕𝐵𝑘𝑙⁄  amounts to inverting a 3 × 3 matrix. Next, differentiation of 𝐵 = 𝐹𝐹𝑇 

yields 
𝜕𝐵𝑖𝑗

𝜕𝐹𝑝𝑞
= 𝛿𝑖𝑝𝐹𝑗𝑞 + 𝐹𝑖𝑞𝛿𝑗𝑝  .                                                                                                        (2.9) 

Finally, by the Chain Rule, 

𝜕𝑉𝑖𝑗

𝜕𝐹𝑝𝑞
=

𝜕𝑉𝑖𝑗

𝜕𝐵𝑘𝑙

𝜕𝐵𝑘𝑙

𝜕𝐹𝑝𝑞
  .                                                                                                              (2.10) 

 

 For finite elasticity, the most appropriate strain measure is the logarithmic (or true) strain 𝜀, 

defined by 

𝜀 = ln 𝑉 .                                                                                                                               (2.11) 

Once again, the logarithm is calculated via the two-dimensional eigenproblem. Thus, 

𝑉 = [ 
𝑉00 𝑉01

𝑉01 𝑉11
 ]  ,          𝑉𝐸 = [ 

𝜆0 0
0 𝜆1

 ]  ,          𝑉𝐸 = 𝜓𝑉𝜓𝑇  ,                             (2.12) 

with 

𝜀𝐸 = [ 
ln 𝜆0 0

0 ln 𝜆1
 ]   ,          𝜀 = 𝜓𝑇𝜀𝐸𝜓  .                                                                   (2.13) 

 The gradients 𝜕𝜀𝑘𝑙 𝜕𝑉𝑝𝑞⁄  are obtained by differentiating the second of eqns. (2.13), viz., 

𝜕𝜀𝑘𝑙

𝜕𝑉𝑝𝑞
=

𝜕𝜀𝑖𝑗
𝐸

𝜕𝑉𝑝𝑞
𝜓𝑖𝑘𝜓𝑗𝑙 + 𝜀𝑖𝑗

𝐸 𝜕𝜓𝑖𝑘

𝜕𝑉𝑝𝑞
𝜓𝑗𝑙 + 𝜀𝑖𝑗

𝐸𝜓𝑖𝑘

𝜕𝜓𝑗𝑙

𝜕𝑉𝑝𝑞
  ,                                                 (2.14) 

where 

𝜕𝜀𝑖𝑗
𝐸

𝜕𝑉𝑝𝑞
=

[
 
 
 
 

 

1

𝜆0

𝜕𝜆0

𝜕𝑉𝑝𝑞
0

0
1

𝜆1

𝜕𝜆1

𝜕𝑉𝑝𝑞

 

]
 
 
 
 

  .                                                                                      (2.15) 

Note that the derivatives 𝜕𝜆𝑖 𝜕𝑉𝑝𝑞⁄  and 𝜕𝜓𝑖𝑗 𝜕𝑉𝑝𝑞⁄  are listed in, respectively, eqns. (1.8) and (1.9) with 

𝑉𝑖𝑗 replacing 𝐴𝑖𝑗. 

 

3. Axisymmetric Strain Measures 
 

 For axisymmetric problems in cylindrical coordinates (𝑟, 𝑧, 𝜃), the deformation gradient 

component 𝐹𝜃𝜃 = 𝐹22 = 1 + 𝑢𝑟 𝑟⁄ , where 𝑢𝑟 is the radial displacement, and 𝑟 is the radial coordinate in 

the undeformed configuration. Also, any derivatives with respect to 𝜃 are zero. Notwithstanding, for 

axisymmetric problems, the deformation gradient 𝐹 and left stretch tensor 𝑉 are of the form 

𝐹 = [ 

𝐹00 𝐹01 0
𝐹10 𝐹11 0
0 0 𝐹22

 ]   ,          𝑉 = [ 

𝑉00 𝑉01 0
𝑉01 𝑉11 0
0 0 𝐹22

 ]  .                                       (3.1) 

Note that the formulas for 𝑉𝑖𝑗 (𝑖, 𝑗) ∈ (0,1) are as given above in eqn. (2.4). Also, the formulas for 

𝜕𝑉𝑖𝑗 𝜕𝐹𝑝𝑞⁄  (𝑖, 𝑗, 𝑝, 𝑞) ∈ (0,1) are as per eqn. (2.10). All other values of 𝜕𝑉𝑖𝑗 𝜕𝐹𝑝𝑞⁄  are zero, except for 

𝜕𝑉22 𝜕𝐹22⁄ = 1. 

 

 As for the logarithmic strain, 
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𝜀 = [ 

𝜀00 𝜀01 0
𝜀01 𝜀11 0
0 0 𝜀22

 ]  ,          𝜀22 = ln𝑉22 = ln𝐹22   .                                               (3.2) 

As before, the formulas for 𝜀𝑖𝑗  (𝑖, 𝑗) ∈ (0,1) are given by the two-dimensional case, cf., eqn. (2.13), and 

the derivatives 𝜕𝜀𝑖𝑗 𝜕𝑉𝑝𝑞⁄  (𝑖, 𝑗, 𝑝, 𝑞) ∈ (0,1) are as per eqn. (2.14). All other 𝜕𝜀𝑖𝑗 𝜕𝑉𝑝𝑞⁄  are zero, except 

for 𝜕𝜀22 𝜕𝑉22⁄ = 1 𝑉22⁄ . 

 

4. Uniaxial Finite Elastic Response 
 

 Figure 2 below shows the uniaxial stress-strain curve for vulcanized rubber. The blue plotted 

points in the figure are the experimental data of Treloar (1940), see the “Herve Marand Rubber Elasticity 

Lecture 17” (eng.uc.edu). While the author is not quite sure of the exact meaning of 𝜎 and 𝜀 in the 

figure, herein they will be interpreted as being true stress and true (or logarithmic) strain. The red curve in 

the figure is a piecewise cubic fit to the data, which fit is constructed as follows. The 𝜀–axis is broken into 

𝑛 subintervals, the 𝑖th one of which is depicted below in Fig. 3. The normalized coordinate 𝜉 ∈ (−1,1) in 

the figure is 

𝜉 =
2𝜀 − 𝜀𝑖+1 − 𝜀𝑖

𝐿
  ,          𝐿 = 𝜀𝑖+1 − 𝜀𝑖  .                                                                 (4.1) 

Now, in each subinterval 𝑖 ∈ (0, 𝑛 − 2), the uniaxial stress is written as 

𝜎 = 𝑎0𝜎𝑖 + 𝑎1𝑚𝑖 + 𝑎2𝜎𝑖+1 + 𝑎3𝑚𝑖+1  ,                                                                   (4.2) 

 

 
Figure 3. Normalized subinterval. 

 

where, e.g., 𝑚𝑖 is the slope of the stress-strain 

curve at point 𝑖 in Fig. 3, and 

𝑎0 =
1

4
(2 − 3𝜉 + 𝜉3)  ,                          

𝑎1 =
𝐿

8
(1 − 𝜉 − 𝜉2 + 𝜉3)  ,                   

𝑎2 =
1

4
(2 + 3𝜉 − 𝜉3)  ,               (4.3) 

𝑎3 =
𝐿

8
(−1 − 𝜉 + 𝜉2 + 𝜉3)  .               

Figure 2. Stress-strain data for vulcanized rubber 

                as explained in the text. 

 

The derivative of eqn. (4.2) is 

 
d𝜎

d𝜀
= 𝑎,𝜀

0𝜎𝑖 + 𝑎,𝜀
1 𝑚𝑖 + 𝑎,𝜀

2𝜎𝑖+1 + 𝑎,𝜀
3𝑚𝑖+1 ,                                                            (4.4) 

with 
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𝑎,𝜀
0 =

3

2𝐿
(−1 + 𝜉2)  ,           𝑎,𝜀

1 =
1

4
(−1 − 2𝜉 + 3𝜉2)  ,                                                

𝑎,𝜀
2 =

3

2𝐿
(1 − 𝜉2)  ,          𝑎,𝜀

3 =
1

4
(−1 + 2𝜉 + 3𝜉2)  .                                         (4.5) 

Finally, for the last subinterval 𝑖 = 𝑛 − 1 (i.e., for 𝜀 > 𝜀𝑛−1), the response is taken as linear, viz., 

𝜎 = 𝑚𝑛−1(𝜀 − 𝜀𝑛−1) + 𝜎𝑛−1   ,             
d𝜎

d𝜀
= 𝑚𝑛−1  .                                        (4.6) 

Thus, the red curve in Fig. 2 above is constructed with 𝑛 = 3 and the constants 

𝜀0 = 0  ,                       𝜀1 = 1.5  ,                   𝜀2 = 1.9                                                    
𝜎0 = 0 psi  ,                𝜎1 = 200 psi  ,          𝜎2 = 460 psi  ,                             (4.7) 

𝑚0 = 230 psi  ,          𝑚1 = 260 psi  ,          𝑚2 = 1570 psi  .                                    

 

 

Additionally, the secant modulus is 

𝐸𝑠 =
𝜎

𝜀
 ,                                          (4.8) 

which is graphed at right in Fig. 4. Finally, 

differentiation of eqn. (4.8) yields 

d𝐸𝑠

d𝜀
=

1

𝜀
( 

d𝜎

d𝜀
− 𝐸𝑠 )  .                (4.9)  

 

 

 

 

 

 

Figure 4. The secant modulus 𝐸𝑠.  

 

5. Multiaxial Response and Stress Measures 
 

 Unlike in the previous sections, here the tensor indices range over three dimensions, i.e., (0,1,2) 

or (𝑟, 𝑧, 𝜃), even though the strain components 𝜀02 = 𝜀20 = 𝜀12 = 𝜀21 = 0, cf., the first of eqns. (3.2). 

 

 Consider a state of tensile uniaxial stress 𝜎𝑧𝑧 and uniform deformation so that the strains are 𝜀𝑧𝑧 

and 𝜀𝑟𝑟 = 𝜀𝜃𝜃 = −𝜈𝜀𝑧𝑧, where 𝜈 is Poisson’s ratio. Now, the effective strain 𝜀 ̅defined by 

𝜀̅ = √
𝜀𝑖𝑗𝜀𝑖𝑗

1 + 2𝜈2
                                                                                                  (5.1) 

is such that, in this case, 𝜀 ̅corresponds to the major strain component 𝜀𝑧𝑧. Consequently, eqn. (5.1) can be 

used to generalize the uniaxial response of Sec. 4 to general states of deformation. 
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 For linear elasticity, the stresses 𝜎𝑖𝑗 are related to the strains by Hooke’s Law, i.e., 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
0 𝜀𝑘𝑙   ,          𝐶𝑖𝑗𝑘𝑙

0 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
 [ (1 − 2𝜈)𝐼𝑖𝑗𝑘𝑙 + 𝜈𝛿𝑖𝑗𝛿𝑘𝑙  ]  ,                                           (5.2) 

where 𝐸 is Young’s modulus. Consistent with the axisymmetric strain state (3.2) and with eqn. (5.2), the 

axisymmetric stress state is also of the form 

𝜎 = [ 
𝜎00 𝜎01 0
𝜎01 𝜎11 0
0 0 𝜎22

 ]  .                                                                                                                                      (5.3) 

For axisymmetric finite elasticity, the true stress components 𝜎𝑖𝑗 also follow eqn. (5.3). 

 

 A reasonable extension of eqn. (5.2) to nonlinear elasticity is to use 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙  ,          𝐶𝑖𝑗𝑘𝑙 =
𝐸𝑠

(1 + 𝜈)(1 − 2𝜈)
 [ (1 − 2𝜈)𝐼𝑖𝑗𝑘𝑙 + 𝜈𝛿𝑖𝑗𝛿𝑘𝑙  ]  ,                                          (5.4) 

where the secant modulus 𝐸𝑠 = 𝜎 𝜀̅⁄ , cf., eqn. (4.8). In other words, 𝜎 = 𝜎(𝜀) in Sec. 4 is generalized to 

𝜎 = 𝜎(𝜀)̅. In eqn. (5.4), 𝜎𝑖𝑗 are the components of the true stress, and 𝜀𝑘𝑙 are the components of the 

logarithmic strain. Also herein, 𝜈 is assumed to be constant (and for the numerical calculations presented 

later in Sec. 10, 𝜈 = 0.45 is used). Finally, it is worth noting that the stress component 𝜎𝑖𝑗 is the force per 

unit deformed area acting in the 𝑗–direction of the deformed configuration on a (differential) face whose 

normal is in the 𝑖–direction of the deformed configuration. 

 

 In the numerical calculations which follow later, the derivatives 𝜕𝜎𝑖𝑗 𝜕𝜀𝑝𝑞⁄  are needed. So, 

differentiation of eqn. (5.1) gives 

𝜕𝜀̅

𝜕𝜀𝑝𝑞
=

𝜀𝑝𝑞

(1 + 2𝜈2)𝜀̅
  .                                                                                                                                           (5.5) 

Next, 

𝜕𝐸𝑠

𝜕𝜀𝑝𝑞
=

d𝐸𝑠

d𝜀̅

𝜕𝜀̅

𝜕𝜀𝑝𝑞
=

1

(1 + 2𝜈2)𝜀̅2
( 

d𝜎

d𝜀̅
− 𝐸𝑠) 𝜀𝑝𝑞  ,                                                                                      (5.6) 

cf., eqn. (4.9). Now, 

d𝐶𝑖𝑗𝑘𝑙

d𝜀̅
=

1

𝜎
( 

d𝜎

d𝜀̅
− 𝐸𝑠) 𝐶𝑖𝑗𝑘𝑙      ⇒      

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝜀𝑝𝑞
=

d𝐶𝑖𝑗𝑘𝑙

d𝜀̅

𝜕𝜀̅

𝜕𝜀𝑝𝑞
=

1

(1 + 2𝜈2)𝜎𝜀̅
( 

d𝜎

d𝜀̅
− 𝐸𝑠) 𝐶𝑖𝑗𝑘𝑙𝜀𝑝𝑞  .    (5.7) 

Finally, differentiation of the first of eqns. (5.4) yields 

𝜕𝜎𝑖𝑗

𝜕𝜀𝑝𝑞
= 𝐶𝑖𝑗𝑝𝑞 +

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝜀𝑝𝑞
𝜀𝑘𝑙   ,                                                                                                                              (5.8) 

so that via the second of eqns. (5.7), 

𝜕𝜎𝑖𝑗

𝜕𝜀𝑝𝑞
= 𝐶𝑖𝑗𝑝𝑞 +

1

(1 + 2𝜈2)𝜎𝜀̅
( 

d𝜎

d𝜀̅
− 𝐸𝑠) 𝜎𝑖𝑗𝜀𝑝𝑞  .                                                                                     (5.9) 

 

 Turning attention now to the nominal stress 𝑁𝑖𝑗, which component is the force per unit 

undeformed area acting on the face whose normal is in the 𝑖–direction in the undeformed configuration, 

with the force acting in the 𝑗–direction of the deformed configuration. The nominal stress is given by 
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𝑁𝑖𝑗 = (det 𝐹)𝐹𝑖𝑘
−1𝜎𝑘𝑗  .                                                                                                       (5.10) 

Note that, for axisymmetric problems, 𝑁 additionally is of the form 

𝑁 = [ 
𝑁00 𝑁01 0
𝑁10 𝑁11 0
0 0 𝑁22

 ]  .                                                                                                (5.11) 

 

 Now, for square matrices in general, 

𝜕(det 𝐴)

𝜕𝐴𝑝𝑞
= (det 𝐴)𝐴𝑝𝑞

−𝑇   ,          
𝜕𝐴𝑖𝑘

−1

𝜕𝐴𝑝𝑞
= −𝐴𝑖𝑝

−1𝐴𝑞𝑘
−1  .                                                  (5.12) 

Thus, with these, the derivative of eqn. (5.10) is 

𝜕𝑁𝑖𝑗

𝜕𝐹𝑝𝑞
= 𝐹𝑞𝑝

−1𝑁𝑖𝑗 − 𝐹𝑖𝑝
−1𝑁𝑞𝑗 + (det 𝐹)𝐹𝑖𝑘

−1
𝜕𝜎𝑘𝑗

𝜕𝐹𝑝𝑞
  ,                                                       (5.13) 

where, by the Chain Rule, 

𝜕𝜎𝑘𝑗

𝜕𝐹𝑝𝑞
=

𝜕𝜎𝑘𝑗

𝜕𝜀𝑚𝑛

𝜕𝜀𝑚𝑛

𝜕𝑉𝑟𝑠

𝜕𝑉𝑟𝑠
𝜕𝐹𝑝𝑞

  .                                                                                            (5.14) 

 

6. The Principle of Virtual Work 
 

 Here we revert to having the tensor indices range over (0,1) or (𝑟, 𝑧). Notwithstanding, for 

axisymmetric problems, equilibrium, in terms of the nominal stress, is 

𝑁𝑗𝑖,𝑗 + 𝑓𝑖 = 0  ,          𝑓𝑖 =
1

𝑟
[ 
𝑁00 − 𝑁22

𝑁01
 ]  ,                                                               (6.1) 

where the comma denotes differentiation with respect to the coordinates in the undeformed configuration, 

and 𝑟 is the radial coordinate in the undeformed configuration. Now, multiply eqn. (6.1) by a once 

differentiable vector field 𝑢𝑖
∗ (the virtual displacement) to obtain 

𝑢𝑖
∗𝑁𝑗𝑖,𝑗 + 𝑢𝑖

∗𝑓𝑖 = 0 .                                                                                                        (6.2) 

By the product rule of differentiation (𝑢𝑖
∗𝑁𝑗𝑖),𝑗

= 𝑢𝑖,𝑗
∗ 𝑁𝑗𝑖 + 𝑢𝑖

∗𝑁𝑗𝑖,𝑗, which when put into eqn. (6.2) yields 

𝑢𝑖,𝑗
∗ 𝑁𝑗𝑖 − 𝑢𝑖

∗𝑓𝑖 = (𝑢𝑖
∗𝑁𝑗𝑖),𝑗

  .                                                                                         (6.3) 

Next, integrate eqn. (6.3) over the volume of the body 𝑉, and use the Divergence Theorem to get 

∫𝑢𝑖,𝑗
∗ 𝑁𝑗𝑖d𝑉

0

𝑉

− ∫𝑢𝑖
∗𝑓𝑖d𝑉

0

𝑉

= ∫𝑢𝑖
∗𝑇𝑖d𝑆

0

𝑆

  ,                                                                   (6.4) 

which is the Principle of Virtual Work. In eqn. (6.4), 𝑆 is the bounding surface of the body, and 𝑇𝑖 = 𝑛𝑗𝑁𝑗𝑖  

is the nominal traction vector (𝐧 is the outward-pointing unit normal vector on 𝑆). 

 

 Introduce the finite element nodal shape functions 𝑆𝐼, and interpolate the virtual displacement 

through the element via 

𝑢𝑖
∗ = 𝑆𝐼𝑢𝑖

∗𝐼  ,          𝑢𝑖,𝑗
∗ = 𝑆,𝑗

𝐼 𝑢𝑖
∗𝐼  ,                                                                               (6.5) 

where 𝑢𝑖
∗𝐼 are the nodal values of the virtual displacement. With these interpolations, eqn. (6.4) becomes 
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𝑢𝑖
∗𝐼 ∫𝑆,𝑗

𝐼 𝑁𝑗𝑖d𝑉

0

𝑉

− 𝑢𝑖
∗𝐼 ∫𝑆𝐼𝑓𝑖d𝑉

0

𝑉

= 𝑢𝑖
∗𝐼 ∫𝑆𝐼𝑇𝑖d𝑆

0

𝑆

  ,                                                                                  (6.6) 

or since 𝑢𝑖
∗𝐼 is arbitrary, 

∫𝑆,𝑗
𝐼 𝑁𝑗𝑖d𝑉

0

𝑉

− ∫𝑆𝐼𝑓𝑖d𝑉

0

𝑉

= ∫𝑆𝐼𝑇𝑖d𝑆

0

𝑆

  .                                                                                                      (6.7) 

Equation (6.7) is the basis of the finite element method. 

 

7. The Four-Noded Isoparametric Finite Element 
 

 

          At left, in Fig. 5, is shown the four-noded finite element in 

𝛏–space, where 𝜉𝑖 ∈ (−1,1). With 

𝑓0(𝑠) =
1

2
(1 − 𝑠)  ,          𝑓1(𝑠) =

1

2
(1 + 𝑠)  ,                  (7.1) 

the four shape functions 𝑆𝐼 are given by the tensor product 

𝑆0 = 𝑓0(𝜉0)𝑓
0(𝜉1)  ,          𝑆

1 = 𝑓1(𝜉0)𝑓
0(𝜉1)  ,                        

𝑆2 = 𝑓0(𝜉0)𝑓
1(𝜉1)  ,          𝑆

3 = 𝑓1(𝜉0)𝑓
1(𝜉1)  .             (7.2) 

The mapping to 𝐱–space is accomplished via 

Figure 5. Four-noded element 

                in 𝛏–space. 

 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼  ,                                                                             (7.3) 

 

where (𝑥0, 𝑥1) = (𝑟, 𝑧) and 𝑥𝑖
𝐼 are the nodal coordinates. The differential of eqn. (7.3) is 

d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼   ,          𝐴𝑖𝛼 =
𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝑖
𝐼  ,          d𝜉𝛼 = 𝐴𝛼𝑖

−1d𝑥𝑖  ,          𝐴𝛼𝑖
−1 =

𝜕𝜉𝛼

𝜕𝑥𝑖
  .                       (7.4) 

By the chain rule and eqns. (7.4), the gradients of the shape functions in 𝐱–space are 

𝑆,𝑖
𝐼 = 𝑆,𝛼

𝐼 𝐴𝛼𝑖
−1  .                                                                                                                                                   (7.5) 

Also consistent with eqns. (7.4), 

d𝐴𝐱 = d𝑟d𝑧 = (det 𝐴)d𝐴𝛏  ,          𝑑𝑉 = 2𝜋𝑟d𝑟d𝑧 = 2𝜋𝑟(det 𝐴)d𝐴𝛏  ,          d𝐴𝛏 = d𝜉0d𝜉1  .      (7.6) 

Thus, volume integrals are transformed as 

∫(0)𝑑𝑉

0

𝑉

= ∬(0)2𝜋𝑟(det 𝐴)

1 1

−1−1

𝑑𝜉0𝑑𝜉1  .                                                                                                  (7.7) 

In a finite element program, the integration on the right side of eqn. (7.7) is performed numerically with 

the 3–point Gauss-Legendre quadrature rule, which rule integrates a fifth-order polynomial exactly. 

 

8. Linear Elastic Finite Element Equations 
 

The initial guess for the solution to the first nonlinear load step is a linear elastic solution. For 

linear elasticity then, eqn. (6.7) is 
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∫𝑆,𝑗
𝐼 𝜎𝑗𝑖d𝑉

0

𝑉

− ∫𝑆𝐼𝑓𝑖d𝑉

0

𝑉

= ∫𝑆𝐼𝑇𝑖d𝑆

0

𝑆

  ,          𝑓𝑖 =
1

𝑟
[ 
𝜎00 − 𝜎22

𝜎01
 ]  .                                          (8.1) 

Now, since the strain component 𝜀22 = 𝜀𝜃𝜃 = (1 𝑟⁄ )𝑢𝑟, write Hooke’s Law (5.2) as 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
0 𝑢𝑙,𝑘 +

1

𝑟
𝐶𝑖𝑗22

0 𝑢𝑟  ,          𝜎22 = 𝐶22𝑘𝑙
0 𝑢𝑙,𝑘 +

1

𝑟
𝐶2222

0 𝑢𝑟  .                                            (8.2) 

Next, interpolate the displacement field through the element via 

𝑢𝑙 = 𝑆𝐽𝑢𝑙
𝐽  ,          𝑢𝑙,𝑘 = 𝑆,𝑘

𝐽 𝑢𝑙
𝐽  ,          𝑢0 = 𝑢𝑟 = [ 𝑆𝐽 0 ] [ 

𝑢0
𝐽

𝑢1
𝐽 ] = 𝑇𝑙

𝐽𝑢𝑙
𝐽  ,                          (8.3) 

where 𝑢𝑙
𝐽
 are the nodal displacements. With the interpolations (8.3), the first of eqns. (8.2) becomes 

𝜎𝑗𝑖 = 𝐴𝑗𝑖𝑙
𝐽

𝑢𝑙
𝐽
  ,          𝐴𝑗𝑖𝑙

𝐽
= 𝐶𝑗𝑖𝑘𝑙

0 𝑆,𝑘
𝐽

+
1

𝑟
𝐶𝑗𝑖22

0 𝑇𝑙
𝐽
  .                                                                          (8.4) 

Similarly, the vector 𝑓𝑖 may be written as 

𝑓𝑖 = 𝐵𝑖𝑙
𝐽𝑢𝑙

𝐽  ,          𝐵𝑖𝑙
𝐽 = [ 

1

𝑟
(𝐶00𝑘𝑙

0 − 𝐶22𝑘𝑙
0 )𝑆,𝑘

𝐽
+

1

𝑟2
(𝐶0022

0 − 𝐶2222
0 )𝑇𝑙

𝐽

1

𝑟
𝐶01𝑘𝑙

0 𝑆,𝑘
𝐽 +

1

𝑟2
𝐶0122

0 𝑇𝑙
𝐽

 ] .                         (8.5) 

Substitution of eqns. (8.4) and (8.5) into eqn. (8.1) yields the element stiffness relation for axisymmetric 

linear elasticity, viz., 

𝐾𝑖𝑙
𝐼𝐽
𝑢𝑙

𝐽
= 𝑓𝑖

𝐼  ,          𝐾𝑖𝑙
𝐼𝐽

= ∫( 𝑆,𝑗
𝐼 𝐴𝑗𝑖𝑙

𝐽
− 𝑆𝐼𝐵𝑖𝑙

𝐽
 )d𝑉

0

𝑉

  ,          𝑓𝑖
𝐼 = ∫𝑆𝐼𝑇𝑖d𝑆

0

𝑆

  .                          (8.6) 

 

9. Nonlinear Elastic Finite Element Equations 
 

 Equation (6.7) is the residual of the nonlinear system, viz., 

𝑟𝑖
𝐼 = ∫𝑆,𝑗

𝐼 𝑁𝑗𝑖d𝑉

0

𝑉

− ∫𝑆𝐼𝑓𝑖d𝑉

0

𝑉

− ∫𝑆𝐼𝑇𝑖d𝑆

0

𝑆

= 0 .                                                                        (9.1) 

Equation (9.1) is solved with Newton-Raphson iteration, the procedure of which is 

𝐽𝑖𝑙
𝐼𝐽∆𝑢𝑙

𝐽 = −𝑟𝑖
𝐼  ,          𝑢𝑙

𝐽
0

imp
= 𝑢𝑙

𝐽 + ∆𝑢𝑙
𝐽  ,          𝐽𝑖𝑙

𝐼𝐽 =
𝜕𝑟𝑖

𝐼

𝜕𝑢𝑙
𝐽   ,                                                 (9.2) 

where 𝑢𝑙
𝐽

0
imp

 is an improved guess to the nodal displacements, and 𝐽𝑖𝑙
𝐼𝐽

 is the Jacobian of the system. So, 

differentiation of eqn. (9.1) gives the Jacobian 

𝐽𝑖𝑙
𝐼𝐽 = ∫𝑆,𝑗

𝐼
𝜕𝑁𝑗𝑖

𝜕𝑢𝑙
𝐽 d𝑉

0

𝑉

− ∫𝑆𝐼
𝜕𝑓𝑖

𝜕𝑢𝑙
𝐽 d𝑉

0

𝑉

  .                                                                                       (9.3) 

Now, for the axisymmetric deformation, the deformation gradient is 

𝐹𝑖𝑗 = 𝛿𝑖𝑗 + 𝑢𝑖,𝑗  ,          𝐹22 = 1 +
1

𝑟
𝑢0  ,                                                                                  (9.4) 

cf., the first of eqns. (3.1). Next, interpolate the displacement field through the element via 
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𝑢𝑙 = 𝑆𝐽𝑢𝑙
𝐽
  ,          𝑢𝑙,𝑘 = 𝑆,𝑘

𝐽
𝑢𝑙

𝐽
  ,          𝑢0 = 𝑇𝑙

𝐽
𝑢𝑙

𝐽
  ,                                                              (9.5) 

where 𝑢𝑙
𝐽
 are the nodal displacements, and where 𝑇𝑙

𝐽
 is defined above in the third of eqns. (8.3). Thus, 

putting the interpolations (9.5) into eqns. (9.4), one obtains 

𝐹𝑙𝑘 = 𝛿𝑙𝑘 + 𝑆,𝑘
𝐽
𝑢𝑙

𝐽
  ,          𝐹22 = 1 +

1

𝑟
𝑇𝑙

𝐽
𝑢𝑙

𝐽
 .                                                                        (9.6) 

Differentiation of eqns. (9.6) then yields 

𝜕𝐹𝑝𝑞

𝜕𝑢𝑙
𝐽 = 𝑆,𝑞

𝐽
𝛿𝑝𝑙   ,          

𝜕𝐹22

𝜕𝑢𝑙
𝐽 =

1

𝑟
𝑇𝑙

𝐽
  .                                                                                       (9.7) 

Next, we have the derivatives 

𝜕𝑁𝑗𝑖

𝜕𝑢𝑙
𝐽 =

𝜕𝑁𝑗𝑖

𝜕𝐹𝑝𝑞

𝜕𝐹𝑝𝑞

𝜕𝑢𝑙
𝐽 +

𝜕𝑁𝑗𝑖

𝜕𝐹22

𝜕𝐹22

𝜕𝑢𝑙
𝐽   ,          

𝜕𝑓𝑖

𝜕𝑢𝑙
𝐽 =

𝜕𝑓𝑖
𝜕𝐹𝑝𝑞

𝜕𝐹𝑝𝑞

𝜕𝑢𝑙
𝐽 +

𝜕𝑓𝑖
𝜕𝐹22

𝜕𝐹22

𝜕𝑢𝑙
𝐽   .                       (9.8) 

Substitution of eqns. (9.7) into the first of eqns. (9.8) gives 

𝜕𝑁𝑗𝑖

𝜕𝑢𝑙
𝐽 ≡ 𝐴𝑗𝑖𝑙

𝐽 =
𝜕𝑁𝑗𝑖

𝜕𝐹𝑙𝑘
𝑆,𝑘

𝐽 +
1

𝑟

𝜕𝑁𝑗𝑖

𝜕𝐹22
𝑇𝑙

𝐽  .                                                                                     (9.9) 

Similarly, substitute eqns. (9.7) into the second of eqns. (9.8) to obtain 

𝜕𝑓𝑖

𝜕𝑢𝑙
𝐽 ≡ 𝐵𝑖𝑙

𝐽
=

[
 
 
 
 

 

1

𝑟
(
𝜕𝑁00

𝜕𝐹𝑙𝑘
−

𝜕𝑁22

𝜕𝐹𝑙𝑘
) 𝑆,𝑘

𝐽 +
1

𝑟2
(
𝜕𝑁00

𝜕𝐹22
−

𝜕𝑁22

𝜕𝐹22
)𝑇𝑙

𝐽

1

𝑟

𝜕𝑁01

𝜕𝐹𝑙𝑘
𝑆,𝑘

𝐽 +
1

𝑟2

𝜕𝑁01

𝜕𝐹22
𝑇𝑙

𝐽
 

]
 
 
 
 

  .                                 (9.10) 

Finally, with eqns. (9.9) and (9.10), the Jacobian (9.3) becomes 

𝐽𝑖𝑙
𝐼𝐽

= ∫(𝑆,𝑗
𝐼 𝐴𝑗𝑖𝑙

𝐽
− 𝑆𝐼𝐵𝑖𝑙

𝐽
)d𝑉

0

𝑉

  .                                                                                               (9.11) 

 

 When performing the iterations, a load step was considered as being converged when all the 

nodal values ∆𝑢𝑙
𝐽
 satisfied 

|∆𝑢𝑙
𝐽
| ≤ 10−4 max|𝑢𝑙

𝐽
|   .                                                                                                      (9.12) 

 

10. Numerical Example – Necking and Drawdown of a Uniaxial Tension Specimen 
 

 The uniaxial tension specimen analyzed is a right circular cylinder of length 2𝐿 and radius 𝑅, 

where 𝐿 = 3 in and 𝑅0 = 0.25 in. To initiate necking and drawdown, the radius of the specimen is taken 

as 

𝑅 =
𝑅0

2
 [ 2 − 𝑓 − 𝑓 cos ( 

𝜋𝑧

𝐿
 ) ]  ,                                                                                   (10.1) 

with 𝑓 = 0.05. In other words, at 𝑧 = 𝐿, the radius is 𝑅 = 𝑅0, and at 𝑧 = 0, the radius is 𝑅 = (1 − 𝑓)𝑅0 

= 0.95𝑅0. The midplane of the specimen is located at 𝑧 = 0, and due to symmetry, only the upper half is 

analyzed numerically. 

 

 The grid of nodes used is shown below in Fig. 6. The grid spans the area 𝑟 ∈ (0, 𝑅) × 𝑧 ∈ (0, 𝐿), 

and it consists of a 6 × 181 = 1086 array of nodes, and a 5 × 180 = 900 array of elements. 
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 The boundary conditions for the problem are 

𝑢𝑟 = 0  on  𝑟 = 0  ,          𝑢𝑧 = 0  on  𝑧 = 0  ,          𝑢𝑧 = 𝑈  on  𝑧 = 𝐿  .                   (10.2) 

The load stepping history used is shown below in the table, where 𝑈 is in inches. For the first load step 0, 

the initial guess to the nonlinear solution is a linear elastic solution, and then iterations are used to achieve 

equilibrium for the nonlinear problem. For subsequent load steps, the initial guess to the solution is the 

solution from the previous load step scaled to fit the boundary conditions for the current load step. 

Necking starts to occur around 𝑈 ≈ 1.5 in, and after that, steps of size ∆𝑈 = 0.1 in were used. For this 

load step size, approximately 4 to 6 iterations were required to obtain equilibrium for each step. 
 

step 0 1 2 3 4 5 6 7 8 9 10 11 

𝑈 0.5 1.0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 

 

12 13 14 15 16 17 18 19 20 21 22 23 24 

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 

 

25 26 27 28 29 30 31 32 

3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 

 

 Figures 7 through 9 below show the deformed grid at various load levels. Note that the Figs. 6 

through 9 all possess the same scale. As Fig. 7 shows, drawdown has initiated by the time 𝑈 = 2.0 in is 

reached. Figures 8 and 9, at load levels 𝑈 = 3.3 in and 𝑈 = 4.5 in, respectively, show the steady state 

propagation of the drawing. 
 

  
Figure 6. Undeformed tension specimen. Figure 7. Tension specimen at 𝑈 = 2.0 in. 
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Figure 8. Tension specimen at 𝑈 = 3.3 in. Figure 9. Tension specimen at 𝑈 = 4.5 in. 

 

 Figures 10 and 11 below show the true strain component 𝜀𝑧𝑧 and true stress component 𝜎𝑧𝑧 

calculated at the centers of the elements whose left boundaries are at 𝑟 = 0. The load level is 𝑈 = 4.5 in, 

and the 𝑍–coordinate in the figures is in the undeformed configuration. The transition region between 

drawn and undrawn material is highly evident. 
 

  
Figure 10. Strain component 𝜀𝑧𝑧 at 𝑈 = 4.5 in. Figure 11. Stress component 𝜎𝑧𝑧 at 𝑈 = 4.5 in. 

 

11. Closing Remarks 
 

 The major advantage of doing the calculations in two dimensions is that the eigenproblems in 

Secs. 1 through 3 are solved in closed form, which results in a highly reliable, and quickly executing, 

numerical method. 

 


