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0. Foreword 

 

Contained herein is work started by the author during the Global Pandemic of 2020. The reader 

will note that no references are given within. This is because the author is self-taught, and has no (or 

little) access to any university-level journals or publications. Nevertheless, the mathematical notation used 

herein is that contained in the text Introduction to the Mechanics of a Continuous Medium, by 

Lawrence E. Malvern, Prentice-Hall, Englewood Cliffs, NJ (1969). The basics of classical plate theory, 

although not in modern tensorial notation, can be found in the text Theory of Plates and Shells, 

by S. Timoshenko and S. Woinowsky-Krieger, McGraw-Hill, New York, NY (1959). 
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1. Governing Equations of Classical Plate Theory 

 

 In the Cartesian indicial equations for plate theory, the two-dimensional alternating symbol 

𝜀𝑖𝑗 = [ 
0 1

−1 0
 ]                                                                                                                                          (1) 

occurs. Note that 𝛆𝑇 = −𝛆, 𝜀𝑗𝑖𝜀𝑗𝑘 = 𝜀𝑖𝑗𝜀𝑘𝑗 = 𝛿𝑖𝑘 , and 𝜀𝑖𝑗𝜀𝑗𝑘 = 𝜀𝑗𝑖𝜀𝑘𝑗 = −𝛿𝑖𝑘, where 𝛿𝑖𝑗 is the Kronecker 

delta, i.e., the components of the two-dimensional identity matrix. The rotation vector 𝜙𝑖 and the 

curvatures 𝜅𝑖𝑗 are given by 

𝜙𝑖 = 𝜀𝑖𝑗𝑢,𝑗  or  𝜙𝑥 = 𝑢,𝑦  and  𝜙𝑦 = −𝑢,𝑥 ,          𝜅𝑖𝑗 = 𝑢,𝑖𝑗 ,                                                           (2) 

where 𝑢 is the transverse displacement of the plate, and the comma denotes differentiation with respect to 

the spatial coordinates. 

 

 Hooke’s Law for the plate is 

𝑀𝑥𝑥 = −𝑀𝑦𝑦 =
𝐸ℎ3

12(1 + 𝜈)
 𝜅𝑥𝑦  ,          𝑀𝑥𝑦 = −

𝐸ℎ3

12(1 − 𝜈2)
 ( 𝜅𝑥𝑥 + 𝜈𝜅𝑦𝑦) ,                                  

𝑀𝑦𝑥 =
𝐸ℎ3

12(1 − 𝜈2)
 (𝜈𝜅𝑥𝑥 + 𝜅𝑦𝑦) ,                                                                                                       (3) 

where 𝑀𝑖𝑗 are the components of the moment tensor, 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, and ℎ is 

the (transverse) thickness of the plate. The quantity 𝑀𝑖𝑗 is the moment vector acting on the 𝑖–face 

pointing in the 𝑗–direction. Thus, for a surface with outward-pointing unit normal 𝐧, the moment vector 

𝓜 acting on that surface is ℳ𝑗 = 𝑛𝑖𝑀𝑖𝑗. In any case, eqns. (3) can be written in tensorial form as 

𝑀𝑖𝑚𝜀𝑚𝑗 = (𝐌 ∙ 𝛆)𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙𝜅𝑘𝑙  ,          𝐿𝑖𝑗𝑘𝑙 =
𝐸ℎ3

12(1 − 𝜈2)
 [ (1 − 𝜈)𝐼𝑖𝑗𝑘𝑙 + 𝜈𝛿𝑖𝑗𝛿𝑘𝑙] ,                     

𝐼𝑖𝑗𝑘𝑙 =
1

2
 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙) .                                                                                                                   (4) 

Note that 𝐋 possesses full symmetry, i.e., 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑗𝑖𝑘𝑙 = 𝐿𝑖𝑗𝑙𝑘 = 𝐿𝑘𝑙𝑖𝑗. 

 

 The moment-equilibrium equations are 

𝑀𝑗𝑖,𝑗 = −𝜀𝑖𝑗𝑉𝑗  or  𝑉𝑗 = −𝜀𝑖𝑗𝑀𝑘𝑖,𝑘  ,                                                                                                      (5) 

which, when written out, are 𝑉𝑥 = 𝑀𝑥𝑦,𝑥 + 𝑀𝑦𝑦,𝑦 and 𝑉𝑦 = −𝑀𝑥𝑥,𝑥 − 𝑀𝑦𝑥,𝑦. In eqns. (5), 𝑉𝑖 are the 

components of the internal transverse shear resultant vector. Now, substitution of the last of eqns. (2) and 

eqns. (4) into eqns. (5) gives the expression for the shear resultant components 

𝑉𝑖 = −
𝐸ℎ3

12(1 − 𝜈2)
 (∇2𝑢),𝑖 ,                                                                                                                   (6) 

where ∇2𝑢 = 𝑢,𝑗𝑗 = 𝑢,𝑥𝑥 + 𝑢,𝑦𝑦 is the Laplacian (or harmonic) of 𝑢. Written out, eqns. (6) are 

𝑉𝑥 = −
𝐸ℎ3

12(1 − 𝜈2)
 (𝑢,𝑥𝑥𝑥 + 𝑢,𝑥𝑦𝑦) ,          𝑉𝑦 = −

𝐸ℎ3

12(1 − 𝜈2)
 (𝑢,𝑥𝑥𝑦 + 𝑢,𝑦𝑦𝑦) .                     (7) 

Now, transverse force-equilibrium is 

𝑉𝑖,𝑖 + 𝑞 = 0 ,                                                                                                                                              (8) 
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where 𝑞 is the distributed load, i.e., force per unit area of plate, with positive being in the positive 

(transverse) 𝑧–direction. Finally, substitution of eqn. (6) into eqn. (8) gives the governing equation of the 

plate, viz., 

𝐸ℎ3

12(1 − 𝜈2)
 ∇4𝑢 = 𝑞 ,                                                                                                                                   (9) 

where ∇4𝑢 = 𝑢,𝑖𝑖𝑗𝑗 = 𝑢,𝑥𝑥𝑥𝑥 + 2𝑢,𝑥𝑥𝑦𝑦 + 𝑢,𝑦𝑦𝑦𝑦 is the bi-harmonic of 𝑢. 

 

2. Governing Equations in Polar Coordinates 

 

 Here, the governing equations of §1 are listed, without comment, in polar coordinates. The 

components of the rotation vector are 

𝜙𝑟 =
1

𝑟
𝑢,𝜃 ,          𝜙𝜃 = −𝑢,𝑟 .                                                                                                                  (10) 

The components of the curvature tensor are 

𝜅𝑟𝑟 = 𝑢,𝑟𝑟 ,          𝜅𝜃𝜃 =
1

𝑟2
𝑢,𝜃𝜃 +

1

𝑟
𝑢,𝑟 ,          𝜅𝑟𝜃 = 𝜅𝜃𝑟 =

1

𝑟
𝑢,𝑟𝜃 −

1

𝑟2
𝑢,𝜃 .                                (11) 

Hooke’s Law is the same as eqns. (3), i.e., 

𝑀𝑟𝑟 = −𝑀𝜃𝜃 =
𝐸ℎ3

12(1 + 𝜈)
 𝜅𝑟𝜃  ,          𝑀𝑟𝜃 = −

𝐸ℎ3

12(1 − 𝜈2)
 ( 𝜅𝑟𝑟 + 𝜈𝜅𝜃𝜃) ,                                      

𝑀𝜃𝑟 =
𝐸ℎ3

12(1 − 𝜈2)
 (𝜈𝜅𝑟𝑟 + 𝜅𝜃𝜃) .                                                                                                        (12) 

The moment-equilibrium equations are 

𝑀𝑟𝜃,𝑟 +
1

𝑟
𝑀𝜃𝜃,𝜃 +

1

𝑟
 (𝑀𝑟𝜃 + 𝑀𝜃𝑟) − 𝑉𝑟 = 0 ,                                                                                             

𝑀𝑟𝑟,𝑟 +
1

𝑟
𝑀𝜃𝑟,𝜃 +

1

𝑟
 (𝑀𝑟𝑟 − 𝑀𝜃𝜃) + 𝑉𝜃 = 0 ,                                                                                   (13) 

and the expressions for the shear resultants are 

𝑉𝑟 = −
𝐸ℎ3

12(1 − 𝜈2)
 (𝑢,𝑟𝑟𝑟 +

1

𝑟
𝑢,𝑟𝑟 −

1

𝑟2
𝑢,𝑟 +

1

𝑟2
𝑢,𝑟𝜃𝜃 −

2

𝑟3
𝑢,𝜃𝜃) ,                                                      

𝑉𝜃 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 

1

𝑟
𝑢,𝑟𝑟𝜃 +

1

𝑟2
𝑢,𝑟𝜃 +

1

𝑟3
𝑢,𝜃𝜃𝜃) .                                                                      (14) 

Finally, the bi-harmonic operator in eqn. (9) is 

∇4𝑢 = 𝑢,𝑟𝑟𝑟𝑟 +
2

𝑟
𝑢,𝑟𝑟𝑟 −

1

𝑟2
𝑢,𝑟𝑟 +

2

𝑟2
𝑢,𝑟𝑟𝜃𝜃 +

1

𝑟3
𝑢,𝑟 −

2

𝑟3
𝑢,𝑟𝜃𝜃 +

4

𝑟4
𝑢,𝜃𝜃 +

1

𝑟4
𝑢,𝜃𝜃𝜃𝜃 .      (15) 

 

3. Unit Point Moment in the 𝒙–direction on an Infinite Plate 

 

Figure 1 below depicts a unit point moment vector applied at the origin of an infinite plate. The 

sense of the twist is given by the so-called right-hand rule. Here, one assumes a displacement of the form 

𝑢 = 𝑓(𝑟) sin 𝜃 .                                                                                                                                        (16) 

Substituting eqn. (16) into ∇4𝑢 = 0 cf., eqn. (15), one obtains 
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𝑓′′′′ +
2

𝑟
𝑓′′′ −

3

𝑟2
𝑓′′ +

3

𝑟3
𝑓′ −

3

𝑟4
𝑓 = 0 ,           (17) 

which has four independent solutions. The one of 

interest is 𝑓(𝑟) = 𝑘𝑟 ln 𝑟 so that 

𝑢 = 𝑘𝑟 ln 𝑟 sin𝜃                                                          (18) 

where the value of the constant 𝑘 is to be determined. 

Equations (11) and (18) yield the curvatures 

𝜅𝑟𝑟 = 𝜅𝜃𝜃  = 𝑘
sin𝜃

𝑟
 ,          𝜅𝑟𝜃 = 𝑘

cos 𝜃

𝑟
         (19) 

so that via eqns. (12), the moments are 

Figure 1. A unit point moment applied at the 

               origin of an infinite plate. 

 

 

𝑀𝑟𝑟 = −𝑀𝜃𝜃 =
𝐸ℎ3

12(1 + 𝜈)
 𝑘

cos 𝜃

𝑟
 ,            𝑀𝑟𝜃 = −𝑀𝜃𝑟 = −

𝐸ℎ3

12(1 − 𝜈)
 𝑘

sin𝜃

𝑟
 .                    (20) 

Now, the moment vector acting on the outer surface of the circle in Fig. 1 is 𝓜 = 𝑀𝑟𝑟𝐞𝑟 + 𝑀𝑟𝜃𝐞𝜃, 

where 𝐞𝑟 = cos 𝜃 𝐞𝑥 + sin𝜃 𝐞𝑦 and 𝐞𝜃 = −sin𝜃 𝐞𝑥 + cos𝜃 𝐞𝑦 are the polar coordinate base vectors, 

and 𝐞𝑥 and 𝐞𝑦 are the Cartesian base vectors. The moment vector is then 𝓜 = ℳ𝑥𝐞𝑥 + ℳ𝑦𝐞𝑦, with 

ℳ𝑥 =
𝐸ℎ3

12(1 − 𝜈2)
 
𝑘

𝑟
 [ (1 − 𝜈) cos2 𝜃 + (1 + 𝜈) sin2 𝜃 ] ,                                                                           

ℳ𝑦 = −
𝜈𝐸ℎ3

6(1 − 𝜈2)
 
𝑘

𝑟
 sin 𝜃 cos 𝜃  .                                                                                                          (21) 

Next, enforcing that 

∫ ℳ𝑥𝑟d𝜃

2𝜋

0

= −1          ⇒           𝑘 = −
6(1 − 𝜈2)

𝜋𝐸ℎ3
 .                                                                             (22) 

Also, note that 

∫ ℳ𝑦𝑟d𝜃

2𝜋

0

= 0                                                                                                                                            (23) 

is satisfied identically. Notwithstanding, finally, eqns. (18), (22) and 𝑦 = 𝑟 sin𝜃 give the displacement for 

this problem, viz., 

𝑢 = −
6(1 − 𝜈2)

𝜋𝐸ℎ3
 𝑦 ln 𝑟 .                                                                                                                         (24) 

 

4. Unit Point Moment in the 𝒚–direction on an Infinite Plate 

 

 Here, at the origin, the unit point moment vector points in the 𝑦–direction, as is pictured below in 

Fig. 2. By inspection, looking at eqn. (24), the displacement is 
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𝑢 =
6(1 − 𝜈2)

𝜋𝐸ℎ3
 𝑥 ln 𝑟 .                                                 (25) 

Now, using 𝑟 = √𝑥2 + 𝑦2 , one sees that 

𝑟,𝑥 =
𝑥

𝑟
 ,          𝑟,𝑦 =

𝑦

𝑟
 .                                                  (26) 

Via the last of eqns. (2), eqns. (3), eqn. (25) and 

eqns. (26), the moment components are obtained as 

𝑀𝑥𝑥 = −𝑀𝑦𝑦 =
(1 − 𝜈)

2𝜋
 [ 

𝑦

𝑟2
− 2

𝑥2𝑦

𝑟4
 ] ,                          

𝑀𝑥𝑦 = −
1

2𝜋
 [ (3 + 𝜈)

𝑥

𝑟2
− 2

𝑥3

𝑟4
− 2𝜈

𝑥𝑦2

𝑟4
 ] ,                 

Figure 2. A unit point moment applied at the 

               origin of an infinite plate. 

 

𝑀𝑦𝑥 =
1

2𝜋
 [ (1 + 3𝜈)

𝑥

𝑟2
− 2𝜈

𝑥3

𝑟4
− 2

𝑥𝑦2

𝑟4
 ] .       (27) 

 

Differentiating the moments (27), by way of eqns. (5), yields the shear components 

𝑉𝑥 = −
1

𝜋
 ( 

1

𝑟2
− 2

𝑥2

𝑟4
 ) ,          𝑉𝑦 =

2

𝜋
 
𝑥𝑦

𝑟4
 .                                                                             (28) 

Finally, one may verify that eqns. (28) satisfy eqn. (8), i.e., 

𝑉𝑥,𝑥 + 𝑉𝑦,𝑦 = 0                                                                                                                                (29) 

so that equilibrium is satisfied. 

 

 To show that this solution corresponds to Fig. 2, evaluate the moment vector on the outer surface 

of the circle in Fig. 2. The outward-pointing unit normal there is 𝐧 = 𝐞𝑟 = cos𝜃 𝐞𝑥 + sin𝜃 𝐞𝑦, and then 

the components of the moment vector are ℳ𝑗 = 𝑛𝑖𝑀𝑖𝑗, or by using 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin𝜃 in 

eqns. (27), one has 

ℳ𝑥 =
𝜈

𝜋𝑟
 sin𝜃 cos𝜃  ,          ℳ𝑦 = −

1

2𝜋𝑟
 [ (1 + 𝜈) cos2 𝜃 + (1 − 𝜈) sin2 𝜃 ] .            (30) 

Equations (30) satisfy 

∫ ℳ𝑥𝑟d𝜃

2𝜋

0

= 0  and  ∫ ℳ𝑦𝑟d𝜃

2𝜋

0

= −1                                                                                   (31) 

as desired. 

 

5. Unit Point Force in the 𝒛–direction on an Infinite Plate 

 

Figure 3 shows a unit point force applied at the origin of an infinite plate. The force acts in the 

positive 𝑧–direction. Here we assume that the displacement depends only on 𝑟, i.e., 𝑢 = 𝑢(𝑟). In this 

case, the biharmonic equation (15) reduces to 

𝑢′′′′ +
2

𝑟
𝑢′′′ −

1

𝑟2
𝑢′′ +

1

𝑟3
𝑢′ = 0 ,                                                                                          (32) 

which has four independent solutions. The one of interest is 
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𝑢 = 𝑘𝑟2 ln 𝑟  ,                                                                     (33) 

where the value of the constant 𝑘 is to be determined. 

From eqns. (11), the curvatures are 

𝜅𝑟𝑟 = 𝑢′′ = 𝑘(2 ln 𝑟 + 3) ,                                                        

𝜅𝜃𝜃 =
1

𝑟
𝑢′ = 𝑘(2 ln 𝑟 + 1) ,                                            (34) 

𝜅𝑟𝜃 = 𝜅𝜃𝑟 = 0 .                                                                            

Next, eqns. (12) give the moments 

𝑀𝑟𝜃 = −
𝐸ℎ3

12(1 − 𝜈2)
 𝑘 [ (3 + 𝜈) + 2(1 + 𝜈) ln 𝑟 ] ,          

𝑀𝜃𝑟 =
𝐸ℎ3

12(1 − 𝜈2)
 𝑘 [ (1 + 3𝜈) + 2(1 + 𝜈) ln 𝑟 ] , (35) 

Figure 3. Unit point force applied at the 

               origin of an infinite plate. The 

               force acts in the positive 

               𝑧–direction. 

 

𝑀𝑟𝑟 = −𝑀𝜃𝜃 = 0 .                                                                      

 

Equations (14) then give the internal shear vector 

𝑉𝑟 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑢′′′ +

1

𝑟
𝑢′′ −

1

𝑟2
𝑢′ ) = −

𝐸ℎ3

3(1 − 𝜈2)
 
𝑘

𝑟
 ,          𝑉𝜃 = 0 .                                (36) 

On the outer surface of the circle in Fig. 3, enforcing 

∫ 𝑉𝑟𝑟d𝜃

2𝜋

0

= −1          ⇒           𝑘 =
3(1 − 𝜈2)

2𝜋𝐸ℎ3
                                                                                         (37) 

so that the displacement which solves this problem is 

𝑢 =
3(1 − 𝜈2)

2𝜋𝐸ℎ3
 𝑟2 ln 𝑟  .                                                                                                                                (38) 

 

6. The Moment Green’s Functions 

 

 Translate the solutions in §3 and §4 by 𝐱0 so that the point moment vectors are applied at 

point 𝐱0. Also, introduce the notation 

𝑋𝑖 = 𝑥𝑖 − 𝑥𝑖
0 ,          𝑟 = √𝑋2 + 𝑌2                                                                                                            (39) 

where 𝑋1 ≡ 𝑋 and 𝑋2 ≡ 𝑌. Note that 

𝑟,𝑖 =
𝑋𝑖

𝑟
 ,                                                                                                                                                         (40) 

where, again, the comma indicates differentiation with respect to 𝑥𝑖. In any case, let 𝑢𝑘 denote the 

displacement due to a unit point moment vector in the 𝑘–direction. Then, from eqns. (24) and (25), 

𝑢𝑘 = −
6(1 − 𝜈2)

𝜋𝐸ℎ3
 𝜀𝑘𝑗𝑋𝑗 ln 𝑟  .                                                                                                                  (41) 
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Using eqn. (41) in the first of eqns. (2) gives the rotations 

𝜙𝑙
𝑘 = −

6(1 − 𝜈2)

𝜋𝐸ℎ3
 ( 𝛿𝑙𝑘 ln 𝑟 + 𝜀𝑙𝑖𝜀𝑘𝑗

𝑋𝑖𝑋𝑗

𝑟2
 ) ,                                                                                          (42) 

and the last of eqns. (2) gives the curvatures 

𝜅𝑖𝑗
𝑘 = −

6(1 − 𝜈2)

𝜋𝐸ℎ3
 𝜀𝑘𝑝  ( 

𝛿𝑖𝑝𝑋𝑗 + 𝛿𝑝𝑗𝑋𝑖 + 𝛿𝑖𝑗𝑋𝑝

𝑟2
− 2

𝑋𝑝𝑋𝑖𝑋𝑗

𝑟4
 ) .                                                        (43) 

Next, substitution of eqn. (43) into eqn. (4) yields the moment field 

𝑀𝑖𝑞
𝑘 = −

1

2𝜋
 𝜀𝑘𝑝  [ (1 − 𝜈)𝜀𝑞𝑗 { 

𝛿𝑖𝑝𝑋𝑗 + 𝛿𝑝𝑗𝑋𝑖 + 𝛿𝑖𝑗𝑋𝑝

𝑟2
− 2

𝑋𝑝𝑋𝑖𝑋𝑗

𝑟4
 } + 2𝜈𝜀𝑞𝑖

𝑋𝑝

𝑟2
 ]  ,                    (44) 

Finally, differentiate eqn. (44) via eqn. (5) to obtain the internal shear vector 

𝑉𝑙
𝑘 =

1

𝜋
 𝜀𝑘𝑝  ( 𝛿𝑙𝑝

1

𝑟2
− 2

𝑋𝑝𝑋𝑙

𝑟4
 ) .                                                                                                                      (45) 

 

 

 

          Some of the quantities needed for implementing the Boundary 

Element Method are in the 𝑛𝑡–system of the plate boundary, which 

system is shown at left. The domain of the plate is 𝐴, and the 

𝑡–coordinate is arc length along the plate’s boundary measured in the 

counterclockwise sense. The outward-pointing unit normal vector is 𝐧, 

Figure 4. A portion of the 

               plate boundary as 

               described in the 

               text. 

and the unit tangent vector is 𝐭. Notwithstanding, the relations 

𝜀𝑖𝑗𝑡𝑗 = 𝑛𝑖 ,          𝜀𝑖𝑗𝑛𝑖 = 𝑡𝑗                                                  (46) 

have been used in calculating the expressions below. 
 

The tangential rotation component is, from eqn. (42), 

𝜙𝑡
𝑘 = 𝑡𝑙𝜙𝑙

𝑘 = −
6(1 − 𝜈2)

𝜋𝐸ℎ3
 ( 𝑡𝑘 ln 𝑟 − 𝑛𝑖𝜀𝑘𝑗

𝑋𝑖𝑋𝑗

𝑟2
 ) .                                                                         (47) 

Using eqn. (44), on the boundary, the moment vector components are, 

ℳ𝑛
𝑘 = 𝑛𝑖𝑀𝑖𝑗

𝑘𝑛𝑗 = −
1

2𝜋
 𝜀𝑘𝑝(1 − 𝜈) [ 

𝑛𝑝(𝐭 ∙ 𝐗) + 𝑡𝑝(𝐧 ∙ 𝐗)

𝑟2
− 2(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)

𝑋𝑝

𝑟4
 ] ,                            

ℳ𝑡
𝑘 = 𝑛𝑖𝑀𝑖𝑗

𝑘 𝑡𝑗 =
1

2𝜋
 𝜀𝑘𝑝  [ (1 + 𝜈)

𝑋𝑝

𝑟2
+ 2(1 − 𝜈)(𝐧 ∙ 𝐗) { 

𝑛𝑝

𝑟2
− (𝐧 ∙ 𝐗)

𝑋𝑝

𝑟4
 } ] ,                       (48) 

where 𝐧 ∙ 𝐗 = 𝑛𝑖𝑋𝑖, etc. Next, the normal component of the shear vector is, from eqn. (45), 

𝑉𝑛
𝑘 = 𝑛𝑖𝑉𝑖

𝑘 =
1

𝜋
 𝜀𝑘𝑝  [ 

𝑛𝑝

𝑟2
− 2(𝐧 ∙ 𝐗)

𝑋𝑝

𝑟4
 ] .                                                                                         (49) 

 

 The quantity ℳ𝑛,𝑡
𝑘  is also required for the implementation of the Boundary Element Method. 

Consequently, the base vectors 𝐧 and 𝐭 need to be differentiated. Figure 5 below shows a portion of the 

plate’s boundary, and the unit vectors there are written as 

𝐧 = cos𝛼 𝐞𝑥 + sin𝛼 𝐞𝑦 ,          𝐭 = −sin𝛼 𝐞𝑥 + cos𝛼 𝐞𝑦 .                                                            (50) 

With eqns. (50) in part, one obtains the derivatives 
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𝑛𝑖,𝑡 = 𝑡𝑖𝛼,𝑡 ,          𝑡𝑖,𝑡 = −𝑛𝑖𝛼,𝑡 ,          𝑋𝑖,𝑡 = 𝑥𝑖,𝑡 ≡ 𝑡𝑖 ,              

𝑟,𝑡 =
𝐭 ∙ 𝐗

𝑟
 ,                                                                                 (51) 

(𝐭 ∙ 𝐗),𝑡 = 1 − (𝐧 ∙ 𝐗)𝛼,𝑡 ,          (𝐧 ∙ 𝐗),𝑡 = (𝐭 ∙ 𝐗)𝛼,𝑡 .              

Differentiation of the first of eqns. (48) then yields 

Figure 5. The 𝑛𝑡–system unit vectors.  

 

ℳ𝑛,𝑡
𝑘 = −

1

2𝜋
 𝜀𝑘𝑝(1 − 𝜈) [ 

𝑛𝑝

𝑟2
+ 2

𝑡𝑝(𝐭 ∙ 𝐗) − 𝑛𝑝(𝐧 ∙ 𝐗)

𝑟2
 𝛼,𝑡                                                                                   

−2
(𝐧 ∙ 𝐗)𝑋𝑝 + 2(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)𝑡𝑝 + (𝐭 ∙ 𝐗)2𝑛𝑝

𝑟4
+ 2

(𝐧 ∙ 𝐗)2 − (𝐭 ∙ 𝐗)2

𝑟4
𝑋𝑝𝛼,𝑡 + 8

(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)2𝑋𝑝

𝑟6
 ] . (52) 

Finally, the Kirchhoff (or effective) shear force is constructed from eqns. (49) and (52), viz., 

𝑉̅𝑛
𝑘 = 𝑉𝑛

𝑘 − ℳ𝑛,𝑡
𝑘  .                                                                                                                                                    (53) 

 

7. The Transverse Green’s Function 

 

 Once again, translate the solution in §5 by 𝐱0 so that the point force is applied at point 𝐱0. 
Equation (38) becomes 

𝑢𝑧 =
3(1 − 𝜈2)

2𝜋𝐸ℎ3
 𝑟2 ln 𝑟 ,                                                                                                                                     (54) 

where the superscript 𝑧 has been added to indicate that the unit point load is applied in the 𝑧–direction.  

Now, differentiate eqn. (54) via the first of eqns. (2) to obtain the rotation vector 

𝜙𝑗
𝑧 =

3(1 − 𝜈2)

2𝜋𝐸ℎ3
 𝜀𝑗𝑖  (2 ln 𝑟 + 1)𝑋𝑖  ,                                                                                                                (55) 

where the notation of eqns. (39) is used. Next, eqn. (54) and the last of eqns. (2) give the curvatures 

𝜅𝑖𝑗
𝑧 =

3(1 − 𝜈2)

2𝜋𝐸ℎ3
 [ (2 ln 𝑟 + 1)𝛿𝑖𝑗 + 2

𝑋𝑖𝑋𝑗

𝑟2
 ] ,                                                                                             (56) 

and then substitution of eqn. (56) into Hooke’s Law (4) yields the moment tensor 

𝑀𝑖𝑝
𝑧 =

1

8𝜋
 { [ (1 + 3𝜈) + 2(1 + 𝜈) ln 𝑟 ]𝜀𝑝𝑖 + 2(1 − 𝜈)𝜀𝑝𝑗

𝑋𝑖𝑋𝑗

𝑟2
 }  .                                                       (57) 

Finally, differentiating eqn. (57) via eqns. (5), one finds the internal shear vector 

𝑉𝑖
𝑧 = −

1

2𝜋
 
𝑋𝑖

𝑟2
 .                                                                                                                                                   (58) 

 

 Now, for the required quantities in the boundary 𝑛𝑡–system, eqn. (55) gives 

𝜙𝑡
𝑧 = 𝑡𝑖𝜙𝑖

𝑧 = −
3(1 − 𝜈2)

2𝜋𝐸ℎ3
 (𝐧 ∙ 𝐗)(2 ln 𝑟 + 1)                                                                                           (59) 

for the tangential rotation. The boundary moment vector 𝓜𝑧 in the 𝑛𝑡–system is 
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ℳ𝑛
𝑧 = 𝑛𝑖𝑀𝑖𝑗

𝑧 𝑛𝑗 =
1

4𝜋
 (1 − 𝜈)(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)

1

𝑟2
 ,                                                                                             

ℳ𝑡
𝑧 = 𝑛𝑖𝑀𝑖𝑗

𝑧 𝑡𝑗 = −
1

8𝜋
 [ (1 + 3𝜈) + 2(1 + 𝜈) ln 𝑟 + 2(1 − 𝜈)(𝐧 ∙ 𝐗)2

1

𝑟2
 ] ,                             (60) 

which are obtained from eqn. (57). The normal component of the shear vector follows from eqn. (58), 

viz., 

𝑉𝑛
𝑧 = 𝑛𝑖𝑉𝑖

𝑧 = −
1

2𝜋
 (𝐧 ∙ 𝐗)

1

𝑟2
 .                                                                                                             (61) 

 

 Using the technique of §6, differentiation of the first of eqns. (60) gives 

ℳ𝑛,𝑡
𝑧 =

1

4𝜋
 (1 − 𝜈) [ 

(𝐧 ∙ 𝐗)

𝑟2
+

(𝐭 ∙ 𝐗)2 − (𝐧 ∙ 𝐗)2

𝑟2
𝛼,𝑡 − 2

(𝐭 ∙ 𝐗)2(𝐧 ∙ 𝐗)

𝑟4
 ]  .                              (62) 

Finally, then, the Kirchhoff shear force follows from eqns. (61) and (62). Thus, 

𝑉̅𝑛
𝑧 = 𝑉𝑛

𝑧 − ℳ𝑛,𝑡
𝑧  .                                                                                                                                       (63) 

 

8. The Moment Reciprocal Theorem 

 

 The Moment Green’s Functions (MGFs) of §6 satisfy moment-equilibrium, 

i.e., 𝑀𝑗𝑖,𝑗
𝑘 + 𝜀𝑖𝑗𝑉𝑗

𝑘 = 0. Multiply this equation by a (non-singular) rotation vector to obtain 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑘 + 𝜙𝑖𝜀𝑖𝑗𝑉𝑗

𝑘 = 0.                                                                                                                           (64) 

Now, 𝜙𝑖𝜀𝑖𝑗 = 𝜀𝑖𝑗𝜀𝑖𝑙𝑢,𝑙 = 𝛿𝑗𝑙𝑢,𝑙 = 𝑢,𝑗, where 𝑢 is the corresponding (non-singular) displacement, so that 

eqn. (64) becomes 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑘 + 𝑢,𝑗𝑉𝑗

𝑘 = 0 .                                                                                                                              (65) 

The product rule of differentiation gives (𝑢𝑉𝑗
𝑘)

,𝑗
= 𝑢,𝑗𝑉𝑗

𝑘 + 𝑢𝑉𝑗,𝑗
𝑘 = 𝑢,𝑗𝑉𝑗

𝑘 (since 𝑉𝑗,𝑗
𝑘 = 0) so that 

eqn. (65) becomes 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑘 + (𝑢𝑉𝑗

𝑘)
,𝑗

= 0 .                                                                                                                         (66) 

The product rule of differentiation also gives 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑘 = (𝜙𝑖𝑀𝑗𝑖

𝑘)
,𝑗

− 𝜙𝑖,𝑗𝑀𝑗𝑖
𝑘  .                                                                                                            (67) 

Next, 𝜙𝑖,𝑗𝑀𝑗𝑖
𝑘 = 𝜀𝑖𝑙𝑢,𝑙𝑗𝑀𝑗𝑖

𝑘 = 𝜅𝑙𝑗(𝐌
𝑘 ∙ 𝛆)

𝑗𝑙
= 𝜅𝑙𝑗𝐿𝑗𝑙𝑝𝑞𝜅𝑞𝑝

𝑘 = (𝐌 ∙ 𝛆)𝑝𝑞𝜅𝑞𝑝
𝑘 = 𝑀𝑝𝑚𝜀𝑚𝑞𝑢,𝑞𝑝

𝑘 = 𝑀𝑝𝑚𝜙𝑚,𝑝
𝑘  . 

With this result, eqn. (67) becomes 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑘 = (𝜙𝑖𝑀𝑗𝑖

𝑘)
,𝑗

− 𝑀𝑗𝑖𝜙𝑖,𝑗
𝑘  .                                                                                                            (68) 

Substituting eqn. (68) into eqn. (66) then yields 

(𝑢𝑉𝑗
𝑘)

,𝑗
+ (𝜙𝑖𝑀𝑗𝑖

𝑘)
,𝑗

= 𝑀𝑗𝑖𝜙𝑖,𝑗
𝑘  .                                                                                                           (69) 

 

Once again, using the product rule of differentiation, 

𝜙𝑖,𝑗
𝑘 𝑀𝑗𝑖 = (𝜙𝑖

𝑘𝑀𝑗𝑖),𝑗
− 𝜙𝑖

𝑘𝑀𝑗𝑖,𝑗 .                                                                                                          (70) 

With the moment-equilibrium equations 𝑀𝑗𝑖,𝑗 = −𝜀𝑖𝑗𝑉𝑗 eqn. (70) is 
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𝜙𝑖,𝑗
𝑘 𝑀𝑗𝑖 = (𝜙𝑖

𝑘𝑀𝑗𝑖),𝑗
+ 𝜙𝑖

𝑘𝜀𝑖𝑗𝑉𝑗 .                                                                                                          (71) 

Via 𝜙𝑖
𝑘𝜀𝑖𝑗𝑉𝑗 = 𝜀𝑖𝑙𝑢,𝑙

𝑘𝜀𝑖𝑗𝑉𝑗 = 𝛿𝑙𝑗𝑢,𝑙
𝑘𝑉𝑗 = 𝑢,𝑗

𝑘𝑉𝑗 , eqn. (71) is 

𝜙𝑖,𝑗
𝑘 𝑀𝑗𝑖 = (𝜙𝑖

𝑘𝑀𝑗𝑖),𝑗
+ 𝑢,𝑗

𝑘𝑉𝑗 .                                                                                                              (72) 

For the fourth time, the product rule of differentiation shows (𝑢𝑘𝑉𝑗),𝑗
= 𝑢,𝑗

𝑘𝑉𝑗 + 𝑢𝑘𝑉𝑗,𝑗 , or from 

transverse equilibrium 𝑉𝑗,𝑗 = −𝑞, eqn. (72) gives 

𝜙𝑖,𝑗
𝑘 𝑀𝑗𝑖 = (𝜙𝑖

𝑘𝑀𝑗𝑖),𝑗
+ (𝑢𝑘𝑉𝑗),𝑗

+ 𝑢𝑘𝑞 .                                                                                            (73) 

 

Equating eqns. (69) and (73), one finds 

(𝑢𝑉𝑗
𝑘)

,𝑗
+ (𝜙𝑖𝑀𝑗𝑖

𝑘)
,𝑗

− (𝑀𝑗𝑖𝜙𝑖
𝑘)

,𝑗
− (𝑉𝑗𝑢

𝑘)
,𝑗

= 𝑢𝑘𝑞 .                                                                   (74) 

Finally, integrate eqn. (74) over the domain of the plate 𝐴, and use the Divergence Theorem on the terms 

on the left-hand eqn. (74) to obtain 

∮𝑢𝑉𝑛
𝑘d𝑡

0

𝑡

+ ∮𝜙𝑖ℳ𝑖
𝑘d𝑡

0

𝑡

− ∮ℳ𝑖𝜙𝑖
𝑘d𝑡

0

𝑡

− ∮𝑉𝑛𝑢𝑘d𝑡

0

𝑡

= ∫𝑢𝑘𝑞d𝐴

0

𝐴

 ,                                            (75) 

where 𝑉𝑛
𝑘 = 𝑛𝑗𝑉𝑗

𝑘, ℳ𝑖
𝑘 = 𝑛𝑗𝑀𝑗𝑖

𝑘 , ℳ𝑖 = 𝑛𝑗𝑀𝑗𝑖 and 𝑉𝑛 = 𝑛𝑗𝑉𝑗. 

 

 Equation (75) is not quite the desired result since the boundary conditions for plate theory are in 

terms of 𝜙𝑡 and ℳ𝑡. Toward that end 

∮𝜙𝑖
𝑘ℳ𝑖d𝑡

0

𝑡

+ ∮𝑢𝑘𝑉𝑛d𝑡

0

𝑡

= ∮𝜙𝑡
𝑘ℳ𝑡d𝑡

0

𝑡

+ ∮𝜙𝑛
𝑘ℳ𝑛d𝑡

0

𝑡

+ ∮𝑢𝑘𝑉𝑛d𝑡

0

𝑡

 .                                        (76) 

The product rule of differentiation, yet again, gives (𝑢𝑘ℳ𝑛)
,𝑡

= 𝑢,𝑡
𝑘ℳ𝑛 + 𝑢𝑘ℳ𝑛,𝑡 = 𝜙𝑛

𝑘ℳ𝑛 + 𝑢𝑘ℳ𝑛,𝑡 or 

d(𝑢𝑘ℳ𝑛) = 𝜙𝑛
𝑘ℳ𝑛d𝑡 + 𝑢𝑘ℳ𝑛,𝑡d𝑡. Integrating this around the circuit gives 

∮𝜙𝑛
𝑘ℳ𝑛d𝑡

0

𝑡

= −∮𝑢𝑘ℳ𝑛,𝑡d𝑡

0

𝑡

 .                                                                                                          (77) 

Substitution of eqn. (77) into eqn. (76) then gives 

∮𝜙𝑖
𝑘ℳ𝑖d𝑡

0

𝑡

+ ∮𝑢𝑘𝑉𝑛d𝑡

0

𝑡

= ∮𝜙𝑡
𝑘ℳ𝑡d𝑡

0

𝑡

+ ∮𝑢𝑘𝑉̅𝑛d𝑡

0

𝑡

 ,                                                                  (78) 

where 𝑉̅𝑛 = 𝑉𝑛 − ℳ𝑛,𝑡. Similarly, 

∮𝑢𝑉𝑛
𝑘d𝑡

0

𝑡

+ ∮𝜙𝑖ℳ𝑖
𝑘d𝑡

0

𝑡

= ∮𝑢𝑉̅𝑛
𝑘d𝑡

0

𝑡

+ ∮𝜙𝑡ℳ𝑡
𝑘d𝑡

0

𝑡

 ,                                                                   (79) 

where 𝑉̅𝑛
𝑘 = 𝑉𝑛

𝑘 − ℳ𝑛,𝑡
𝑘  . Putting eqns. (78) and (79) into eqn. (75) gives the Reciprocal Theorem, i.e., 

∮𝑢𝑉̅𝑛
𝑘d𝑡

0

𝑡

+ ∮𝜙𝑡ℳ𝑡
𝑘d𝑡

0

𝑡

− ∮ℳ𝑡𝜙𝑡
𝑘d𝑡

0

𝑡

− ∮ 𝑉̅𝑛𝑢𝑘d𝑡

0

𝑡

= ∫𝑢𝑘𝑞d𝐴

0

𝐴

 .                                           (80) 
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9. The Transverse Reciprocal Theorem 

 

 The Transverse Green’s Function (TGF) of §7 satisfies moment-equilibrium, 

i.e., 𝑀𝑗𝑖,𝑗
𝑧 + 𝜀𝑖𝑗𝑉𝑗

𝑧 = 0. Multiply this equation by a (non-singular) rotation vector to obtain 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑧 + 𝜙𝑖𝜀𝑖𝑗𝑉𝑗

𝑧 = 0,                                                                                                                            (81) 

or, by performing manipulations like those used to obtain eqn. (65) in §8, 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑧 + 𝑢,𝑗𝑉𝑗

𝑧 = 0 .                                                                                                                               (82) 

From the product rule of differentiation, (𝑢𝑉𝑗
𝑧)

,𝑗
= 𝑢,𝑗𝑉𝑗

𝑧 + 𝑢𝑉𝑗,𝑗
𝑧  , which when substituted into eqn. (82) 

gives 

𝜙𝑖𝑀𝑗𝑖,𝑗
𝑧 + (𝑢𝑉𝑗

𝑧)
,𝑗

= 𝑢𝑉𝑗,𝑗
𝑧  .                                                                                                                    (83) 

Next, using the same procedure as was used to obtain eqns. (67) through (69) in §8, eqn. (83) becomes 

(𝑢𝑉𝑗
𝑧)

,𝑗
+ (𝜙𝑖𝑀𝑗𝑖

𝑧)
,𝑗

− 𝜙𝑖,𝑗
𝑧 𝑀𝑗𝑖 = 𝑢𝑉𝑗,𝑗

𝑧  .                                                                                              (84) 

Here, the analog to eqn. (72) in §8 is 

𝜙𝑖,𝑗
𝑧 𝑀𝑗𝑖 = (𝜙𝑖

𝑧𝑀𝑗𝑖),𝑗
+ 𝑢,𝑗

𝑧𝑉𝑗 .                                                                                                                 (85) 

Putting eqn. (85) into eqn. (84) yields 

(𝑢𝑉𝑗
𝑧)

,𝑗
+ (𝜙𝑖𝑀𝑗𝑖

𝑧)
,𝑗

− (𝜙𝑖
𝑧𝑀𝑗𝑖),𝑗

− 𝑢,𝑗
𝑧𝑉𝑗 = 𝑢𝑉𝑗,𝑗

𝑧  .                                                                           (86) 

Via the product rule of differentiation again, (𝑢𝑧𝑉𝑗),𝑗
= 𝑢,𝑗

𝑧𝑉𝑗 + 𝑢𝑧𝑉𝑗,𝑗 = 𝑢,𝑗
𝑧𝑉𝑗 − 𝑢𝑧𝑞 , where transverse 

equilibrium was used. Substituting this result into eqn. (86), one finds 

(𝑢𝑉𝑗
𝑧)

,𝑗
+ (𝜙𝑖𝑀𝑗𝑖

𝑧)
,𝑗

− (𝑀𝑗𝑖𝜙𝑖
𝑧)

,𝑗
− (𝑉𝑗𝑢

𝑧)
,𝑗

= 𝑢𝑉𝑗,𝑗
𝑧 + 𝑢𝑧𝑞 .                                                       (87) 

Now, integrate eqn. (87) over the domain of the plate 𝐴, and use the Divergence Theorem on the terms on 

the left-hand side of the equation. Thus, 

∮𝑢𝑉𝑛
𝑧d𝑡

0

𝑡

+ ∮𝜙𝑖ℳ𝑖
𝑧d𝑡

0

𝑡

− ∮ℳ𝑖𝜙𝑖
𝑧d𝑡

0

𝑡

− ∮𝑉𝑛𝑢𝑧d𝑡

0

𝑡

= ∫𝑢𝑉𝑗,𝑗
𝑧 d𝐴

0

𝐴

+ ∫𝑢𝑧𝑞d𝐴

0

𝐴

 ,                      (88) 

where 𝑉𝑛
𝑧 = 𝑛𝑗𝑉𝑗

𝑧, ℳ𝑖
𝑧 = 𝑛𝑗𝑀𝑗𝑖

𝑧 , ℳ𝑖 = 𝑛𝑗𝑀𝑗𝑖 and 𝑉𝑛 = 𝑛𝑗𝑉𝑗 . 

 

 For the transverse Green’s function 

∫𝑉𝑗,𝑗
𝑧 d𝐴

0

𝐴

= ∮𝑉𝑛
𝑧d𝑡

0

𝑡

= −𝛽 ,          𝛽 = [ 0 if 𝐱0 is outside of 𝐴
1 if 𝐱0 is in 𝐴               

 ] .                                               (89) 

Since 𝑉𝑗,𝑗
𝑧 = 0 everywhere except at 𝐱0, where it is singular, 

∫𝑢𝑉𝑗,𝑗
𝑧 d𝐴

0

𝐴

= −𝛽𝑢(𝐱0) .                                                                                                                       (90) 

Next, substitute eqn. (90) into eqn. (88) to obtain 

∮𝑢𝑉𝑛
𝑧d𝑡

0

𝑡

+ ∮𝜙𝑖ℳ𝑖
𝑧d𝑡

0

𝑡

− ∮ℳ𝑖𝜙𝑖
𝑧d𝑡

0

𝑡

− ∮𝑉𝑛𝑢𝑧d𝑡

0

𝑡

= ∫𝑢𝑧𝑞d𝐴

0

𝐴

− 𝛽𝑢(𝐱0) .                           (91) 
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Finally, following the procedure used to obtain eqns. (76) through (79) of §8, eqn. (91) yields the desired 

result 

∮𝑢𝑉̅𝑛
𝑧d𝑡

0

𝑡

+ ∮𝜙𝑡ℳ𝑡
𝑧d𝑡

0

𝑡

− ∮ℳ𝑡𝜙𝑡
𝑧d𝑡

0

𝑡

− ∮𝑉̅𝑛𝑢𝑧d𝑡

0

𝑡

= ∫𝑢𝑧𝑞d𝐴

0

𝐴

− 𝛽𝑢(𝐱0) ,                                          (92) 

where 𝑉̅𝑛
𝑧 = 𝑉𝑛

𝑧 − ℳ𝑛,𝑡
𝑧  and 𝑉̅𝑛 = 𝑉𝑛 − ℳ𝑛,𝑡 . 

 

10. Gradients of the Transverse Reciprocal Theorem 

 

 Looking at the case where the singularity 𝐱0 is inside the plate 𝐴, i.e., 𝛽 = 1, eqn. (92) becomes 

𝑢(𝐱0) = −∮𝑢𝑉̅𝑛
𝑧d𝑡

0

𝑡

− ∮𝜙𝑡ℳ𝑡
𝑧d𝑡

0

𝑡

+ ∮ℳ𝑡𝜙𝑡
𝑧d𝑡

0

𝑡

+ ∮𝑉̅𝑛𝑢𝑧d𝑡

0

𝑡

+ ∫𝑢𝑧𝑞d𝐴

0

𝐴

 .                                         (93) 

If the plate quantities 𝑢, 𝜙𝑡, ℳ𝑡 and 𝑉̅𝑛 are known on the boundary, then eqn. (93) is a formula for the 

displacement in the interior 𝐴 of the plate. Using the notation 

𝑓:𝑖 =
𝜕𝑓

𝜕𝑥𝑖
0   and  ∇0

2𝑓 = 𝑓:𝑖𝑖                                                                                                                                   (94) 

the derivatives of eqn. (93) with respect to 𝐱0 are 

𝑢:𝑖(𝐱
0) = −∮𝑢𝑉̅𝑛:𝑖

𝑧 d𝑡

0

𝑡

− ∮𝜙𝑡ℳ𝑡:𝑖
𝑧 d𝑡

0

𝑡

+ ∮ℳ𝑡𝜙𝑡:𝑖
𝑧 d𝑡

0

𝑡

+ ∮𝑉̅𝑛𝑢:𝑖
𝑧d𝑡

0

𝑡

+ ∫𝑢:𝑖
𝑧𝑞d𝐴

0

𝐴

 .                                   (95) 

The second derivatives are 

𝑢:𝑖𝑗(𝐱
0) = −∮𝑢𝑉̅𝑛:𝑖𝑗

𝑧 d𝑡

0

𝑡

− ∮𝜙𝑡ℳ𝑡:𝑖𝑗
𝑧 d𝑡

0

𝑡

+ ∮ℳ𝑡𝜙𝑡:𝑖𝑗
𝑧 d𝑡

0

𝑡

+ ∮𝑉̅𝑛𝑢:𝑖𝑗
𝑧 d𝑡

0

𝑡

+ ∫𝑢:𝑖𝑗
𝑧 𝑞d𝐴

0

𝐴

 ,                         (96) 

and the gradients of the Laplacian are 

∇0
2𝑢:𝑖(𝐱

0) = −∮𝑢∇0
2𝑉̅𝑛:𝑖

𝑧 d𝑡

0

𝑡

− ∮𝜙𝑡∇0
2ℳ𝑡:𝑖

𝑧 d𝑡

0

𝑡

+ ∮ℳ𝑡∇0
2𝜙𝑡:𝑖

𝑧 d𝑡

0

𝑡

+ ∮𝑉̅𝑛∇0
2𝑢:𝑖

𝑧d𝑡

0

𝑡

+ ∫𝑞∇0
2𝑢:𝑖

𝑧d𝐴

0

𝐴

 .     (97) 

From eqn. (95) the rotation vector 𝜙𝑖 can be found in the interior; from eqn. (96), the curvatures 𝜅𝑖𝑗 and 

moments 𝑀𝑖𝑗; and finally, from eqn. (97), the shear vector 𝑉𝑖. 

 

11. Gradients of the Transverse Green’s Function 

 

 To differentiate the quantities of the TGF in §7 with respect to 𝐱0, so that the formulas in §10 can 

be evaluated, one notes that 

𝑋𝑖:𝑗 = −𝛿𝑖𝑗  ,          𝑟:𝑖 = −
𝑋𝑖

𝑟
 ,          (𝐧 ∙ 𝐗):𝑖 = −𝑛𝑖 ,          (𝐭 ∙ 𝐗):𝑖 = −𝑡𝑖 .                                              (98) 

The gradients of eqns. (54) and (59) are, respectively, 

𝑢:𝑖
𝑧 = −

3(1 − 𝜈2)

2𝜋𝐸ℎ3
 (2 ln 𝑟 + 1)𝑋𝑖                                                                                                                     (99) 

and 
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𝜙𝑡:𝑖
𝑧 =

3(1 − 𝜈2)

2𝜋𝐸ℎ3
 [ (2 ln 𝑟 + 1)𝑛𝑖 + 2(𝐧 ∙ 𝐗)

𝑋𝑖

𝑟2
 ] .                                                                                        (100) 

Again, respectively, the gradients of eqns. (60) through (63) are 

ℳ𝑡:𝑖
𝑧 =

1

4𝜋
 { (1 + 𝜈)

𝑋𝑖

𝑟2
+ 2(1 − 𝜈)(𝐧 ∙ 𝐗) [ 

𝑛𝑖

𝑟2
− (𝐧 ∙ 𝐗)

𝑋𝑖

𝑟4
 ] } ,                                                                (101) 

𝑉𝑛:𝑖
𝑧 =

1

2𝜋
 [ 

𝑛𝑖

𝑟2
− 2(𝐧 ∙ 𝐗)

𝑋𝑖

𝑟4
 ] ,                                                                                                                           (102) 

ℳ𝑛,𝑡:𝑖
𝑧 =

1 − 𝜈

4𝜋
 {−

𝑛𝑖

𝑟2
+ 2 [ 

(𝐭 ∙ 𝐗)2𝑛𝑖 + 2(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)𝑡𝑖 + (𝐧 ∙ 𝐗)𝑋𝑖

𝑟4
 ]                                                                

−8
(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)2𝑋𝑖

𝑟6
+ 2 [ 

(𝐧 ∙ 𝐗)𝑛𝑖 − (𝐭 ∙ 𝐗)𝑡𝑖
𝑟2

+
(𝐭 ∙ 𝐗)2 − (𝐧 ∙ 𝐗)2

𝑟4
𝑋𝑖  ] 𝛼,𝑡  } ,                         (103) 

𝑉̅𝑛:𝑖
𝑧 = 𝑉𝑛:𝑖

𝑧 − ℳ𝑛,𝑡:𝑖
𝑧  .                                                                                                                                               (104) 

 

 The second gradients are, via differentiation of eqns. (99) through (104), 

𝑢:𝑖𝑗
𝑧 =

3(1 − 𝜈2)

2𝜋𝐸ℎ3
 [ (2 ln 𝑟 + 1)𝛿𝑖𝑗 + 2

𝑋𝑖𝑋𝑗

𝑟2
 ] ,                                                                                                (105) 

𝜙𝑡:𝑖𝑗
𝑧 = −

3(1 − 𝜈2)

𝜋𝐸ℎ3
 [ 

𝑛𝑖𝑋𝑗 + 𝑋𝑖𝑛𝑗 + (𝐧 ∙ 𝐗)𝛿𝑖𝑗

𝑟2
− 2(𝐧 ∙ 𝐗)

𝑋𝑖𝑋𝑗

𝑟4
 ]  ,                                                           (106) 

ℳ𝑡:𝑖𝑗
𝑧 =

1

4𝜋
 { (1 + 𝜈) [−

𝛿𝑖𝑗

𝑟2
+ 2

𝑋𝑖𝑋𝑗

𝑟4
 ] + 2(1 − 𝜈) [−

𝑛𝑖𝑛𝑗

𝑟2
                                                                                     

+
2(𝐧 ∙ 𝐗)(𝑛𝑖𝑋𝑗 + 𝑋𝑖𝑛𝑗) + (𝐧 ∙ 𝐗)2𝛿𝑖𝑗

𝑟4
− 4(𝐧 ∙ 𝐗)2

𝑋𝑖𝑋𝑗

𝑟6
 ]  } ,                                                          (107) 

𝑉𝑛:𝑖𝑗
𝑧 =

1

𝜋
 [ 

𝑛𝑖𝑋𝑗 + 𝑋𝑖𝑛𝑗 + (𝐧 ∙ 𝐗)𝛿𝑖𝑗

𝑟4
− 4(𝐧 ∙ 𝐗)

𝑋𝑖𝑋𝑗

𝑟6
 ]  ,                                                                                (108) 

ℳ𝑛,𝑡:𝑖𝑗
𝑧 =

1 − 𝜈

2𝜋
 {−

2 [ (𝐭 ∙ 𝐗)(𝑛𝑖𝑡𝑗 + 𝑡𝑖𝑛𝑗) + (𝐧 ∙ 𝐗)𝑡𝑖𝑡𝑗 ] + (𝑛𝑖𝑋𝑗 + 𝑋𝑖𝑛𝑗) + (𝐧 ∙ 𝐗)𝛿𝑖𝑗

𝑟4
                                 

+4
(𝐭 ∙ 𝐗)2(𝑋𝑖𝑛𝑗 + 𝑛𝑖𝑋𝑗) + 2(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)(𝑋𝑖𝑡𝑗 + 𝑡𝑖𝑋𝑗) + (𝐧 ∙ 𝐗)𝑋𝑖𝑋𝑗 + (𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)2𝛿𝑖𝑗

𝑟6
              

−24(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)2
𝑋𝑖𝑋𝑗

𝑟8
+ [ 

𝑡𝑖𝑡𝑗 − 𝑛𝑖𝑛𝑗

𝑟2
+ 4

(𝐭 ∙ 𝐗)2 − (𝐧 ∙ 𝐗)2

𝑟6
𝑋𝑖𝑋𝑗                                                          

+
2(𝐧 ∙ 𝐗)(𝑛𝑖𝑋𝑗 + 𝑋𝑖𝑛𝑗) − 2(𝐭 ∙ 𝐗)(𝑡𝑖𝑋𝑗 + 𝑋𝑖𝑡𝑗) + { (𝐧 ∙ 𝐗)2 − (𝐭 ∙ 𝐗)2 }𝛿𝑖𝑗

𝑟4
 ]  𝛼,𝑡 } ,             (109) 

𝑉̅𝑛:𝑖𝑗
𝑧 = 𝑉𝑛:𝑖𝑗

𝑧 − ℳ𝑛,𝑡:𝑖𝑗
𝑧  .                                                                                                                                           (110) 

 

 While this is an intermediate step, setting 𝑗 to 𝑖 in eqns. (105) through (110) yields the Laplacians 

∇0
2𝑢𝑧 =

6(1 − 𝜈2)

𝜋𝐸ℎ3
 ( ln 𝑟 + 1 ) ,                                                                                                                           (111) 

∇0
2𝜙𝑡

𝑧 = −
6(1 − 𝜈2)

𝜋𝐸ℎ3
 
(𝐧 ∙ 𝐗)

𝑟2
 ,                                                                                                                             (112) 



A Boundary Element Method for Classical Plate Theory 
 

14 
 

∇0
2ℳ𝑡

𝑧 =
1 − 𝜈

2𝜋
 [−

1

𝑟2
+ 2

(𝐧 ∙ 𝐗)2

𝑟4
 ] ,                                                                                                                (113) 

∇0
2𝑉𝑛

𝑧 = 0 ,                                                                                                                                                                 (114) 

∇0
2ℳ𝑛,𝑡

𝑧 =
1 − 𝜈

𝜋
 {−

(𝐧 ∙ 𝐗)

𝑟4
+ 4

(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)2

𝑟6
+ [ 

(𝐧 ∙ 𝐗)2 − (𝐭 ∙ 𝐗)2

𝑟4
 ] 𝛼,𝑡 } ,                                      (115) 

∇0
2𝑉̅𝑛

𝑧 = −∇0
2ℳ𝑛,𝑡

𝑧  .                                                                                                                                                  (116) 

 

 Finally, differentiation of eqns. (111) through (116) gives the gradients of the Laplacian 

∇0
2𝑢:𝑖

𝑧 = −
6(1 − 𝜈2)

𝜋𝐸ℎ3
 
𝑋𝑖

𝑟2
 ,                                                                                                                                      (117) 

∇0
2𝜙𝑡:𝑖

𝑧 =
6(1 − 𝜈2)

𝜋𝐸ℎ3
 [ 

𝑛𝑖

𝑟2
− 2(𝐧 ∙ 𝐗)

𝑋𝑖

𝑟4
 ] ,                                                                                                         (118) 

∇0
2ℳ𝑡:𝑖

𝑧 = −
2(1 − 𝜈)

𝜋
 [ 

𝑋𝑖 + (𝐧 ∙ 𝐗)𝑛𝑖

𝑟4
− 2(𝐧 ∙ 𝐗)2

𝑋𝑖

𝑟6
 ] ,                                                                              (119) 

∇0
2𝑉𝑛:𝑖

𝑧 = 0 ,                                                                                                                                                               (120) 

∇0
2ℳ𝑛,𝑡:𝑖

𝑧 =
1 − 𝜈

𝜋
 { 

𝑛𝑖

𝑟4
− 4 [ 

(𝐭 ∙ 𝐗)2𝑛𝑖 + 2(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)𝑡𝑖 + (𝐧 ∙ 𝐗)𝑋𝑖

𝑟6
 ] + 24(𝐧 ∙ 𝐗)(𝐭 ∙ 𝐗)2

𝑋𝑖

𝑟8
                     

+2[ 
(𝐭 ∙ 𝐗)𝑡𝑖 − (𝐧 ∙ 𝐗)𝑛𝑖

𝑟4
+ 2{ (𝐧 ∙ 𝐗)2 − (𝐭 ∙ 𝐗)2 }

𝑋𝑖

𝑟6
 ]  𝛼,𝑡 } ,                                                  (121) 

∇0
2𝑉̅𝑛:𝑖

𝑧 = −∇0
2ℳ𝑛,𝑡:𝑖

𝑧  .                                                                                                                                              (122) 

 

12. Governing Equations on the Plate Boundary in the Curvilinear 𝒏𝒕–system 

 

 Once the values of 𝑢, 𝜙𝑡, ℳ𝑡 and 𝑉̅𝑛 are known on the boundary, the various tensorial quantities 

of plate theory may be determined on the boundary in the boundary 𝑛𝑡–system. The base vectors of the 
 

 
 

Figure 6. A segment of plate boundary possessing 

               positive curvature. 

Figure 7. A segment of plate boundary possessing 

               negative curvature. 
 

system are given in terms of angle 𝛼 by eqns. (50) of §6. Figures 6 and 7 directly above show, 

respectively, portions of the boundary with positive and negative curvatures. The point 𝑂 in the figures is 

the instantaneous center of curvature. The curvature 𝑐 is 

𝑐 ≡
1

𝑛
= 𝛼,𝑡 ,          d𝑡 = 𝑛d𝛼   or  d𝛼 = 𝑐d𝑡 .                                                                                                    (123) 
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Note that the 𝑛–coordinate is like the 𝑟–coordinate of polar coordinates, and that the 𝛼–coordinate is like 

the 𝜃–coordinate of polar coordinates. Consistent with eqns. (50), the derivatives of the base vectors are 

𝐧,𝛼 = 𝐭 ,          𝐭,𝛼 = −𝐧 ,                                                                                                                                         (124) 

and the gradient operator is 

𝛁 = 𝐧
𝜕

𝜕𝑛
+ 𝐭

𝜕

𝜕𝑡
= 𝐧

𝜕

𝜕𝑛
+ 𝐭

1

𝑛
 
𝜕

𝜕𝛼
= 𝐧

𝜕

𝜕𝑛
+ 𝐭 𝑐

𝜕

𝜕𝛼
 .                                                                                     (125) 

Thus, 𝛁𝑢 = 𝑢,𝑛𝐧 + 𝑢,𝑡𝐭 so that the rotations are 

𝜙𝑛 = 𝑢,𝑡 ,          𝜙𝑡 = −𝑢,𝑛 .                                                                                                                                   (126) 

The curvatures are 𝛋 = 𝛁𝛁𝑢, or 

𝜅𝑛𝑛 = 𝑢,𝑛𝑛 ,          𝜅𝑡𝑡 = 𝑢,𝑡𝑡 + 𝑐𝑢,𝑛 ,          𝜅𝑛𝑡 = 𝜅𝑡𝑛 = 𝑢,𝑛𝑡 − 𝑐𝑢,𝑡  ,                                                           (127) 

and the moment components then follow Hooke’s Law, i.e., 

ℳ𝑛 = 𝑀𝑛𝑛 = −𝑀𝑡𝑡 =
𝐸ℎ3

12(1 + 𝜈)
 𝜅𝑛𝑡 ,         ℳ𝑡 = 𝑀𝑛𝑡 = −

𝐸ℎ3

12(1 − 𝜈2)
 ( 𝜅𝑛𝑛 + 𝜈𝜅𝑡𝑡 ) ,                               

𝑀𝑡𝑛 =
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝜈𝜅𝑛𝑛 + 𝜅𝑡𝑡 ) .                                                                                                                     (128) 

Next, ∇2𝑢 = 𝛁 ∙ 𝛁𝑢 = 𝑢,𝑛𝑛 + 𝑢,𝑡𝑡 + 𝑐𝑢,𝑛 . From this, one finds 

𝛁 ∇2𝑢 = ( 𝑢,𝑛𝑛𝑛+ 𝑢,𝑛𝑡𝑡 + 𝑐𝑢,𝑛𝑛 − 2𝑐𝑢,𝑡𝑡 − 𝑐2𝑢,𝑛 ) 𝐧 + ( 𝑢,𝑛𝑛𝑡 + 𝑢,𝑡𝑡𝑡 + 𝑐𝑢,𝑛𝑡 ) 𝐭 .                              (129) 

Consequently, the shear vector is 

𝐕 = −
𝐸ℎ3

12(1 − 𝜈2)
 𝛁 ∇2𝑢 ,                                                                                                                                    (130) 

or 

𝑉𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑢,𝑛𝑛𝑛+ 𝑢,𝑛𝑡𝑡 + 𝑐𝑢,𝑛𝑛 − 2𝑐𝑢,𝑡𝑡 − 𝑐2𝑢,𝑛 ) ,                                                                             

𝑉𝑡 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑢,𝑛𝑛𝑡 + 𝑢,𝑡𝑡𝑡 + 𝑐𝑢,𝑛𝑡 ) .                                                                                                   (131) 

Finally, the Kirchhoff shear force is 𝑉̅𝑛 = 𝑉𝑛 − ℳ𝑛,𝑡 , which is not a tensorial quantity, and so ℳ𝑛,𝑡 may 

be calculated just by taking the derivative of ℳ𝑛 with respect to 𝑡. Specifically, putting the curvature 𝜅𝑛𝑡 

of eqn. (127) into the first of eqns. (128), differentiating, and then using the first of eqns. (131), one 

obtains 

𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑢,𝑛𝑛𝑛 + (2 − 𝜈)𝑢,𝑛𝑡𝑡 + 𝑐𝑢,𝑛𝑛 − (3 − 𝜈)𝑐𝑢,𝑡𝑡 − 𝑐2𝑢,𝑛 − (1 − 𝜈)𝑐,𝑡𝑢,𝑡 ] .           (132) 

We will return to these results, in the context of the numerical method, later in §17. 

 

 Notwithstanding, once any tensorial quantities are known on the boundary, they may be 

transformed to the Cartesian 𝑥𝑦–system as follows. Let 

𝜓𝑖𝑗 = [ 
cos𝛼 sin𝛼

− sin𝛼 cos𝛼
 ] .                                                                                                                                     (133) 

Then, with obvious notation, 
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𝜙𝑗
𝑥𝑦

= 𝜙𝑖
𝑛𝑡𝜓𝑖𝑗 ,          𝑀𝑘𝑙

𝑥𝑦
= 𝑀𝑖𝑗

𝑛𝑡𝜓𝑖𝑘𝜓𝑗𝑙  ,          𝑉𝑗
𝑥𝑦

= 𝑉𝑖
𝑛𝑡𝜓𝑖𝑗 .                                                             (134) 

 

13. Example − Bubble Distributed Load on a Rectangular Plate 

 

 At this point, all the theoretical developments needed to implement the Boundary Element 

Method have been presented. Here, the solution is to a simple problem in Cartesian coordinates is 

presented, which problem will be solved numerically later in §20. 
 

 

          The domain of the rectangular plate under 

consideration is shown at left in Fig. 8. The plate is 

subject to the distributed load 

𝑞 = −
𝜋2𝐹

4𝐿𝐻
cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                  (135) 

where 𝐹 > 0 is the net downward force of the distribution, 

i.e., 

∫𝑞d𝐴

0

𝐴

= −𝐹 .                                                     (136) 

Note that 𝑞 is zero on the boundary and is maximum at the 

origin. Hence the term “bubble.”  On all four faces the 

boundary conditions are 

𝑢 = 0 ,          ℳ𝑡 = 0 ,                                        (137) 

which are the so-called “simply-supported” boundary 

Figure 8. Domain of an 𝐿 by 𝐻 

               rectangular plate. 

conditions. 

 

 The governing eqn. (9) in §1 is, via eqn. (135), 

𝑢,𝑥𝑥𝑥𝑥 + 2𝑢,𝑥𝑥𝑦𝑦 + 𝑢,𝑦𝑦𝑦𝑦 = −
3𝜋2(1 − 𝜈2)𝐹

𝐸ℎ3𝐿𝐻
 cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                                                    (138) 

which is solved with a displacement of the form 

𝑢 = 𝑘 cos ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                                                                              (139) 

Substituting eqn. (139) into eqn. (138) gives that 

𝑘 = −
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿3𝐻3

(𝐿2 + 𝐻2)2
 ]  𝐹.                                                                                                                 (140) 

With eqns. (139) and (140) the problem is solved. 

 

 By differentiation of eqn. (139) by way of eqns. (2) of §1, the rotation vector is 

𝜙𝑥 =
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿3𝐻2

(𝐿2 + 𝐻2)2
 ]  𝐹 cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) ,                                                                                       

𝜙𝑦 = −
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿2𝐻3

(𝐿2 + 𝐻2)2
 ]  𝐹 sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                     (141) 
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Now, using eqns. (2) and (3) of §1, the moment components are 

𝑀𝑥𝑥 = −𝑀𝑦𝑦 = −
(1 − 𝜈)𝐹

4
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ] sin ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) ,                                                                     

𝑀𝑥𝑦 = −
𝐹

4
 [ 

𝐿𝐻(𝜈𝐿2 + 𝐻2)

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                                                                               (142) 

𝑀𝑦𝑥 =
𝐹

4
 [ 

𝐿𝐻(𝐿2 + 𝜈𝐻2)

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                                                

Finally, differentiating eqns. (142) via eqns. (5) of §1, one obtains the components of the shear vector 

𝑉𝑥 =
𝜋𝐹

4
 [ 

𝐻

𝐿2 + 𝐻2
 ] sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,          𝑉𝑦 =

𝜋𝐹

4
 [ 

𝐿

𝐿2 + 𝐻2
 ] cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) .      (143) 

Note that both the displacement 𝑢 and the bending moments 𝑀𝑥𝑦 and 𝑀𝑦𝑥 are zero on the boundary so 

that the boundary conditions (137) are satisfied. 

 

 On the right (𝑥 = 𝐿 2⁄ ) and top (𝑦 = 𝐻 2⁄ ) boundaries, respectively, the Kirchhoff shear force is 

𝑉̅𝑛
right

= 𝑉𝑥 − 𝑀𝑥𝑥,𝑦 =
𝜋𝐻𝐹

4
 [ 

(2 − 𝜈)𝐿2 + 𝐻2

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑦

𝐻
 ) ,                                                                             

𝑉̅𝑛
top

= 𝑉𝑦 + 𝑀𝑦𝑦,𝑥 =
𝜋𝐿𝐹

4
 [ 

𝐿2 + (2 − 𝜈)𝐻2

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑥

𝐿
 ) .                                                                  (144) 

At the upper right corner, the normal moment vector ℳ𝑛
− = 𝑀𝑥𝑥 before the corner and ℳ𝑛

+ = 𝑀𝑦𝑦 after 

the corner are 

ℳ𝑛
− = −ℳ𝑛

+ = −
(1 − 𝜈)𝐹

4
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ]                                                                                             (145) 

so that the corner force (at the upper right corner) is 

ℳ𝑛
− − ℳ𝑛

+ = −
(1 − 𝜈)𝐹

2
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ] .                                                                                              (146) 

 

14. Example – Sinusoidal Transverse Edge Load on an Annular Cantilever Plate 

 

 Here a problem in polar coordinates is solved, which problem later will be solved numerically 

in §21. Specifically, below in Fig. 9 is shown the domain of a quarter-annular plate. The distributed load 𝑞 

is zero. The boundaries at 𝜃 = 0 and 𝜃 = 𝜋 2⁄  are simply supported, i.e., 

𝑢 = 0 ,          ℳ𝑡 = 0 ,                                                                                                                                     (147) 

while the inner radius 𝑟 = 𝑎 is built in, i.e., 

𝑢 = 𝜙𝑡 = 0 .                                                                                                                                                     (148) 

A transverse sinusoidal edge traction is applied to the outer radius 𝑟 = 𝑏, viz., 

ℳ𝑡 = 0 ,          𝑉̅𝑛 =
2𝐹

𝑏
sin4𝜃 ,                                                                                                                   (149) 

where 𝐹 > 0 is the total force of the traction over the interval 𝜃 ∈ [ 0 , 𝜋 4⁄  ]. 
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          This problem may be solved with a displacement of 

the form 

𝑢 = 𝑓(𝑟) sin 4𝜃 .                                                                 (150) 

With eqn. (150) and eqns. (10) of §2, the components of the 

rotation vector are 

𝜙𝑟 =
4

𝑟
 𝑓 cos4𝜃 ,          𝜙𝜃 = −𝑓′ sin4𝜃 .                   (151) 

Next, via eqns. (11) and (12) of §2, the moments are 

𝑀𝑟𝑟 = −𝑀𝜃𝜃 =
𝐸ℎ3

3(1 + 𝜈)
 ( 

1

𝑟
𝑓′ −

1

𝑟2
𝑓 ) cos 4𝜃,                   

𝑀𝑟𝜃 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑓′′ +

𝜈

𝑟
𝑓′ −

16𝜈

𝑟2
𝑓 ) sin 4𝜃 , (152) 

Figure 9. The quarter-annular plate 

               under consideration. 𝑀𝜃𝑟 =
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝜈𝑓′′ +

1

𝑟
𝑓′ −

16

𝑟2
𝑓 ) sin 4𝜃 .               

 

Finally, eqns. (14) of §2 give the components of the shear vector 

𝑉𝑟 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑓′′′ +

1

𝑟
𝑓′′ −

17

𝑟2
𝑓′ +

32

𝑟3
𝑓 ) sin4𝜃 ,                                                                                     

𝑉𝜃 = −
𝐸ℎ3

3(1 − 𝜈2)
 ( 

1

𝑟
𝑓′′ +

1

𝑟2
𝑓′ −

16

𝑟3
𝑓 ) cos 4𝜃 .                                                                                     (153) 

 

 On the boundary, the Kirchhoff shear forces are 

𝑟 = 𝑏 ⇒   𝑉̅𝑛 = 𝑉𝑟 −
1

𝑟
 
d𝑀𝑟𝑟

d𝜃
 ,            𝜃 = 0 ⇒   𝑉̅𝑛 = −𝑉𝜃 −

d𝑀𝜃𝜃

d𝑟
 ,                                                                     

𝜃 = 𝜋 2⁄  ⇒   𝑉̅𝑛 = 𝑉𝜃 +
d𝑀𝜃𝜃

d𝑟
 ,         𝑟 = 𝑎 ⇒   𝑉̅𝑛 = −𝑉𝑟 +

1

𝑟
 
d𝑀𝑟𝑟

d𝜃
 ,                                                     (154) 

or, respectively, for 𝑟 = 𝑏, 𝜃 = 0, 𝜃 = 𝜋 2⁄  and 𝑟 = 𝑎, 

𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑓′′′ +

1

𝑏
𝑓′′ −

(33 − 16𝜈)

𝑏2
𝑓′ +

16(3 − 𝜈)

𝑏3
𝑓 ] sin4𝜃 ,                                                       

𝑉̅𝑛 =
𝐸ℎ3

12(1 − 𝜈2)
 [ 

4(2 − 𝜈)

𝑟
𝑓′′ −

4(1 − 2𝜈)

𝑟2
𝑓′ −

8(7 + 𝜈)

𝑟3
𝑓 ] ,                                                                          

𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 

4(2 − 𝜈)

𝑟
𝑓′′ −

4(1 − 2𝜈)

𝑟2
𝑓′ −

8(7 + 𝜈)

𝑟3
𝑓 ] ,                                                          (155) 

𝑉̅𝑛 =
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑓′′′ +

1

𝑎
𝑓′′ −

(33 − 16𝜈)

𝑎2
𝑓′ +

16(3 − 𝜈)

𝑎3
𝑓 ] sin4𝜃 .                                                          

 

 Now, substituting the displacement (150) into the governing equation ∇4𝑢 = 0, cf., 

eqn. (15) in §2, one obtains the differential equation 

𝑓′′′′ +
2

𝑟
𝑓′′′ −

33

𝑟2
𝑓′′ +

33

𝑟3
𝑓′ +

192

𝑟4
𝑓 = 0 .                                                                                                    (156) 
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The solution to eqn. (156) is 

𝑓 =
𝑘1

𝑟4
+

𝑘2

𝑟2
+ 𝑘3𝑟

4 + 𝑘4𝑟
6 ,                                                                                                                                           

𝑓′ = −4
𝑘1

𝑟5
− 2

𝑘2

𝑟3
+ 4𝑘3𝑟

3 + 6𝑘4𝑟
5 ,                                                                                                                           

𝑓′′ = 20
𝑘1

𝑟6
+ 6

𝑘2

𝑟4
+ 12𝑘3𝑟

2 + 30𝑘4𝑟
4 ,                                                                                                         (157) 

𝑓′′′ = −120
𝑘1

𝑟7
− 24

𝑘2

𝑟5
+ 24𝑘3𝑟 + 120𝑘4𝑟

3 .                                                                                                           

Looking at eqns. (150) and (152), one sees that the boundary conditions (147) are satisfied identically. 

The conditions, respectively, 𝑢(𝑎, 𝜃) = 0, 𝜙𝑡 = −𝜙𝜃(𝑎, 𝜃) = 0, ℳ𝑡 = 𝑀𝑟𝜃(𝑏, 𝜃) = 0 

and 𝑉̅𝑛 = (2𝐹 𝑏⁄ ) sin4𝜃 yield the system of equations to satisfy the boundary conditions (148) and (149), 

viz., 

[
 
 
 

 

1 𝑎4⁄              1 𝑎2⁄

−2 𝑎5⁄             −1 𝑎3⁄
𝑎4              𝑎6

2𝑎3                3𝑎5

10(1 − 𝜈) 𝑏6⁄ 3(1 − 3𝜈) 𝑏4⁄

−5(1 − 𝜈) 𝑏6⁄ −3(2 − 𝜈) 𝑏4⁄

6(1 − 𝜈)𝑏2 5(3 − 𝜈)𝑏4

3(1 − 𝜈)𝑏2 −5𝜈𝑏4

 

]
 
 
 

 [ 

𝑘1

𝑘2

𝑘3

𝑘4

 ] = [ 

0
0
0

3(1 − 𝜈2)𝐹 (2𝐸ℎ3)⁄

 ] . (158) 

Using the constants 

𝐸 = 3.0 × 107 psi ,     𝜈 = 0.3 ,     ℎ = 1.0 in ,     𝐹 = 10 000 lb ,     𝑎 = 120 in ,     𝑏 = 360 in ,        (159) 

the solution to eqn. (158) is 

𝑘1 = 1.666 591 940 231 4806 × 108 ,             𝑘2 = −1.547 802 450 020 5023 × 104 ,                              

𝑘3 = 1.354 435 354 756 7996 × 10−9 ,          𝑘4 = −3.252 532 373 598 9290 × 10−15               (160) 

which constants solve the problem at hand. 

 

As a final comment, for the constants (159) and (160), the values of the four corner forces are 
 

Corner Force at (𝑟, 𝜃) Value (lb) 

(𝑀𝜃𝜃 − 𝑀𝑟𝑟)(𝑎, 0) 0 

(𝑀𝜃𝜃 − 𝑀𝑟𝑟)(𝑏, 0) −3935.94 

(𝑀𝑟𝑟 − 𝑀𝜃𝜃)(𝑏, 𝜋 2⁄ ) 3935.94 

(𝑀𝑟𝑟 − 𝑀𝜃𝜃)(𝑎, 𝜋 2⁄ ) 0 

 

15. A 14-degree-of-freedom Curved Boundary Element 

 

Figure 10 below shows the geometry of the boundary element. The length of the element is 𝐿, and 

along the element, the tangential coordinate is 𝑡 ∈ [ 0 , 𝐿 ] and the normalized tangential coordinate 

is 𝜉 ∈ [ −1 , 1 ], i.e., 

𝑡 =
𝐿

2
(𝜉 + 1) ,          

d𝜉

d𝑡
=

2

𝐿
 .                                                                                                                               (161) 

In Fig. 10, 𝛼0 and 𝛼1 are the nodal values of the angle 𝛼 defined in Fig. 5 of §6. The element may be 

either straight or curved, and if it is curved, it is a circular arc. The node 2 is located at 𝜉 = 0. 

Notwithstanding, the linear interpolation functions are 
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𝑑0 =
1

2
(1 − 𝜉) ,          𝑑1 =

1

2
(1 + 𝜉) .                   (162) 

 

          If 𝛼0 = 𝛼1, then the element is straight, and the 

𝑥𝑦–coordinates are interpolated as 

𝑥𝑖 = 𝑑𝐼𝑥𝐼𝑖  ,                                                                  (163) 

and in this case, the length of the element is 

𝐿 = √(𝑥1 − 𝑥0)
2 + (𝑦1 − 𝑦0)

2 .                           (164) 

 

          If the element is curved, it has (𝑥𝑐  , 𝑦𝑐) as the center of 

Figure 10. Geometry of the 

                  boundary element as 

                  described in the text. 

curvature, and the radius of curvature 𝑅 is constant, as is the 

curvature 𝑐 = 1 𝑅⁄ . Here the angle 𝛼 is interpolated through the 

element as 
 

𝛼 = 𝑑𝐼𝛼𝐼 ,                                                                                                                                                  (165) 

and the curvature and element length are given by 

𝑐 =
cos𝛼1 − cos𝛼0

𝑥1 − 𝑥0
  or  𝑐 =

sin𝛼1 − sin𝛼0

𝑦1 − 𝑦0
     ⇒      𝐿 =

𝛼1 − 𝛼0

𝑐
 .                                       (166) 

For the curved element, the 𝑥𝑦–coordinates are interpolated along the element via 

𝑥 =
cos𝛼

𝑐
 ,          𝑦 =

sin𝛼

𝑐
 .                                                                                                                (167) 

 

 

          The degrees-of-freedom of the boundary element are shown at 

left in Fig. 11. The displacement 𝑢 is interpolated through the 

element as a quartic; the tangential rotation 𝜙𝑡, a cubic; the 

tangential bending moment ℳ𝑡, a quadratic; and finally, the 

Kirchhoff shear force 𝑉̅𝑛, as a linear function. The decreasing orders 

of these interpolations are consistent with the governing equations of 

plate theory. 

 

          The Kirchhoff shear force is interpolated through the element 

via 

𝑉̅𝑛 = 𝑑0𝑉̅𝑛
0 + 𝑑1𝑉̅𝑛

1 ,                                                                (168) 

where the functions 𝑑𝐼 are given above in eqns. (162). 

 

Figure 11. Degrees-of-freedom 

                 of the boundary 

                 element. 

          The tangential bending moment is interpolated as 

ℳ𝑡 = 𝑐0ℳ𝑡
0 + 𝑐1ℳ𝑡

2 + 𝑐2ℳ𝑡
1 ,                            (169) 

 

where 

𝑐0 =
1

2
(−𝜉 + 𝜉2) ,          𝑐1 = 1 − 𝜉2 ,          𝑐2 =

1

2
(𝜉 + 𝜉2) .                                                        (170) 

If ℳ𝑡,𝑡 is needed in the element, then eqns. (170) may be differentiated via 

d𝑐𝐼

d𝑡
=

d𝑐𝐼

d𝜉
 
d𝜉

d𝑡
=

2

𝐿
 
d𝑐𝐼

d𝜉
 .                                                                                                                           (171) 
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 The tangential rotation is interpolated with 

𝜙𝑡 = 𝑏0𝜙𝑡
0 + 𝑏1𝜙𝑡,𝑡

0 + 𝑏2𝜙𝑡
1 + 𝑏3𝜙𝑡,𝑡

1  ,                                                                                                          (172) 

where 

𝑏0 =
1

4
(2 − 3𝜉 + 𝜉3) ,          𝑏1 =

𝐿

8
(1 − 𝜉 − 𝜉2 + 𝜉3) ,                                                                                         

𝑏2 =
1

4
(2 + 3𝜉 − 𝜉3) ,          𝑏3 =

𝐿

8
(−1 − 𝜉 + 𝜉2 + 𝜉3) .                                                                         (173) 

As before, if one requires the derivatives of 𝜙𝑡 within the element, the technique of eqn. (171) may be 

employed. 

 

 Finally, in the element, the displacement 𝑢 follows 

𝑢 = 𝑎0𝑢0 + 𝑎1𝑢,𝑡
0 + 𝑎2𝑢2 + 𝑎3𝑢1 + 𝑎4𝑢,𝑡

1  ,                                                                                                  (174) 

where 

𝑎0 =
1

4
(−3𝜉 + 4𝜉2 + 𝜉3 − 2𝜉4) ,          𝑎1 =

𝐿

8
(−𝜉 + 𝜉2 + 𝜉3 − 𝜉4) ,          𝑎2 = 1 − 2𝜉2 + 𝜉4 ,                

𝑎3 =
1

4
(3𝜉 + 4𝜉2 − 𝜉3 − 2𝜉4) ,             𝑎4 =

𝐿

8
(−𝜉 − 𝜉2 + 𝜉3 + 𝜉4) .                                                   (175) 

Once again, if the derivatives of 𝑢 are needed in the element, they can be calculated by using the chain 

rule, as in eqn. (171). 

 

 Now, define the element nodal vector 𝑣𝐼 by 

𝑣𝐼 =

[
 
 
 
 
 
𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5]
 
 
 
 
 

[ 𝑣
6

𝑣7 ]

[
 
 
 
 
 
𝑣8

𝑣9

𝑣10

𝑣11

𝑣12

𝑣13]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑢0

𝑢,𝑡
0

𝜙𝑡
0

𝜙𝑡,𝑡
0

ℳ𝑡
0

𝑉̅𝑛
0 ]

 
 
 
 
 
 

[
𝑢2

ℳ𝑡
2]

[
 
 
 
 
 
 
𝑢1

𝑢,𝑡
1

𝜙𝑡
1

𝜙𝑡,𝑡
1

ℳ𝑡
1

𝑉̅𝑛
1 ]

 
 
 
 
 
 

 ,          𝐴𝐼 =

[
 
 
 
 
 
𝑎0

𝑎1

0
0
0
0 ]

 
 
 
 
 

[ 𝑎
2

0
 ]

[
 
 
 
 
 
𝑎3

𝑎4

0
0
0
0 ]

 
 
 
 
 

 ,          𝐵𝐼 =

[
 
 
 
 
 
0
0
𝑏0

𝑏1

0
0 ]

 
 
 
 
 

[ 
0
0
 ]

[
 
 
 
 
 
0
0
𝑏2

𝑏3

0
0 ]

 
 
 
 
 

 ,          𝐶𝐼 =

[
 
 
 
 
 
0
0
0
0
𝑐0

0 ]
 
 
 
 
 

[ 
0
𝑐1 

]

[
 
 
 
 
 
0
0
0
0
𝑐2

0 ]
 
 
 
 
 

 ,          𝐷𝐼 =

[
 
 
 
 
 
0
0
0
0
0
𝑑0]

 
 
 
 
 

[ 
0
0
 ]

[
 
 
 
 
 
0
0
0
0
0
𝑑1]

 
 
 
 
 

 ,              (176) 

which allows the interpolations (168), (169), (172) and (174) to be written more compactly as 

𝑢 = 𝐴𝐼𝑣𝐼 ,          𝜙𝑡 = 𝐵𝐼𝑣𝐼 ,          ℳ𝑡 = 𝐶𝐼𝑣𝐼 ,          𝑉̅𝑛 = 𝐷𝐼𝑣𝐼 .                                                             (177) 
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16. Boundary Solution via the Boundary Element Method 

 

 The Reciprocal Theorem, i.e., eqn. (80) in §8, or eqn. (92) in §9 with the singularity point 𝐱0 

outside of the plate domain 𝐴 (𝛽 = 0), restated is 

∮𝑢𝑉̅𝑛
𝑘d𝑡

0

𝑡

+ ∮𝜙𝑡ℳ𝑡
𝑘d𝑡

0

𝑡

− ∮ℳ𝑡𝜙𝑡
𝑘d𝑡

0

𝑡

− ∮𝑉̅𝑛𝑢𝑘d𝑡

0

𝑡

= ∫𝑢𝑘𝑞d𝐴

0

𝐴

 ,                                           (178) 

where here, 𝑘 ≡ 𝑥 and 𝑘 ≡ 𝑦 refer to the MGFs, and 𝑘 ≡ 𝑧 refers to the TGF. Substituting the 

interpolations (177) into (178), one obtains the discretized form 

𝐾𝑘𝐼𝑣𝐼 = 𝐿𝑘  ,                                                                                                                                          (179) 

where 

𝐾𝑘𝐼 = ∫(𝐴𝐼𝑉̅𝑛
𝑘 + 𝐵𝐼ℳ𝑡

𝑘 − 𝐶𝐼𝜙𝑡
𝑘 − 𝐷𝐼𝑢𝑘)d𝑡

0

𝑡

 ,          𝐿𝑘 = ∫𝑞𝑢𝑘d𝐴

0

𝐴

 ,                                   (180) 

which equations may be integrated around the boundary circuit, and over the domain 𝐴 if 𝑞 ≠ 0. 

 

 Generating an equation for each unknown boundary value depends on the boundary conditions, of 

which there are four common cases as listed in the table. 
 

Case Prescribed Values Unknown Values 

1 𝑢 , 𝜙𝑡 ℳ𝑡 , 𝑉̅𝑛 

2 𝑢 , ℳ𝑡 𝜙𝑡 , 𝑉̅𝑛 

3 𝜙𝑡 , 𝑉̅𝑛 𝑢 , ℳ𝑡 

4 ℳ𝑡 , 𝑉̅𝑛 𝑢 , 𝜙𝑡 
 

Figure 12 below shows a schematic of the boundary element for the boundary condition case 1. 

The red quantities are prescribed, so no equations need to be generated for them. On the other hand, the 

black quantities are unknown, so that equations need to be generated. For example, node 0 possess two  
 

 
 

Figure 12. The boundary element for boundary 

                 condition case 1. 

Figure 13. The boundary element for boundary 

                 condition case 2. 
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unknowns, and two equations are obtained by placing the singularity point 𝐱0 outside of the domain 𝐴 

near node 0, as denoted by the red point in the figure, and then two equations are obtained from the two 

components of the MGFs. Similarly, node 2 possesses one unknown, and placing 𝐱0 outside of 𝐴 near 

node 2 and using the TGF generates one equation. 

 

 As for boundary condition case 2, depicted above in Fig. 13, node 0 possesses three unknowns. 

Similarly to case 1, 𝐱0 is placed outside of 𝐴 near node 0, and using the two components of the MGFs, 

and the one component of the TGF, yields the needed three equations. Note that for case 2, no equations 

need to be generated for node 2. 

 

 Figure 14 below depicts the boundary condition case 3. The three equations required for node 0 

are constructed exactly as they were for node 0 of case 2. For node 2, the two required equations are 

provided by placing 𝐱0 outside of 𝐴 near node 2, and by using the two components of the MGFs. 
 

 
 

Figure 14. The boundary element for boundary 

condition case 3. 

Figure 15. The boundary element for boundary 

condition case 4. 

 

 Boundary condition case 4 is shown by Fig. 15 at above right. Here node 0 possesses four 

unknowns, and the four equations are obtained by placing two singularity points outside of 𝐴 near node 0, 

and then by using the two components of the MGFs at each of the two points. The single equation for 

node 2 is constructed exactly as was done for node 2 of boundary condition case 1. 

 

 Turning attention to the integration of the second of eqns. (180), the interior 𝐴 of the domain is 

discretized with a grid of bi-linear integrations cells. Each integration cell, in fact, is just the usual bi-

linear iso-parametric finite element. Figure 16 below shows the cell in normalized 𝝃–space, whose 

differential of area is d𝐴∗, and Fig.17 shows the cell in physical space, whose differential of area is d𝐴. 

With the linear functions 

𝑓0 =
1

2
(1 − 𝜉) ,          𝑓1 =

1

2
(1 + 𝜉) ,                                                                                                               (181) 

the interpolation functions of the cell are 

𝑆0 = 𝑓0(𝜉0)𝑓
0(𝜉1) ,        𝑆

1 = 𝑓1(𝜉0)𝑓
0(𝜉1) ,          𝑆

2 = 𝑓0(𝜉0)𝑓
1(𝜉1) ,        𝑆

3 = 𝑓1(𝜉0)𝑓
1(𝜉1) .    (182) 
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Figure 16. Integration cell in normalized 𝝃–space. Figure 17. Integration cell in physical space. 

 

The geometry and distributed load are then represented in the interior of the cell via 

𝑥𝑖 = 𝑆𝐼𝑥𝐼𝑖 ,          𝑞 = 𝑆𝐼𝑞𝐼 .                                                                                                                        (183) 

Now, 

d𝑥𝑖 =
𝜕𝑥𝑖

𝜕𝜉𝛼
 d𝜉𝛼  ,          

𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝐼𝑖 ≡ 𝐴𝑖𝛼  ,          d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼   ⇒   d𝐴 = (det𝐀)d𝐴∗ .         (184) 

Thus, the integral 

∫ℱd𝐴

0

𝐴

= ∫ℱ(det𝐀)d𝐴∗

0

𝐴∗

= ∫ ∫ℱ(det𝐀)d𝜉0d𝜉1

1

−1

1

−1

≈ ∑ ∑(ℱ det𝐀)(𝜉0
𝑛, 𝜉1

𝑚)𝑤𝑛𝑤𝑚

O

𝑚=1

O

𝑛=1

 ,    (185) 

where 𝜉𝑛 and 𝑤𝑛 are, respectively, the points and weights of a Gauss-Legendre quadrature rule of 

order O. 

 

 The integration of the first of eqns. (180) is also performed with Gauss-Legendre quadrature, viz., 

∫ℱ𝑑𝑡

0

𝑡

= ∫ℱd𝑡

𝐿

0

=
𝐿

2
∫ℱ𝑑𝜉

1

−1

≈
𝐿

2
∑ ℱ(𝜉𝑛)𝑤𝑛

O

𝑛=1

 .                                                                              (186) 

 

 Finally, the corner forces occurring in eqn. (178) need to be accounted for. When integrating 

 

around a corner, as depicted at left in Fig. 18, the Green’s functions 

possess corner forces. Namely, to the left-hand side of the first of 

eqns. (178), one must add 

(𝑀𝑛𝑛
𝑘 )

1
𝑢 − (𝑀𝑛𝑛

𝑘 )
0
𝑢 ,                                                (187) 

where 𝑢 is the displacement degree-of-freedom at the corner. The 

Figure 18. Integrating 

                 around a corner 

                 formed by two 

                 adjoining 

                 boundary elements. 

solution itself also possesses corner forces c. f.𝐼, which are degrees-

of-freedom in the system of equations to solve. So, when integrating 

around a corner, one must also add 

−𝑢𝑘c. f.𝐼                                                                       (188) 

 

to the left-hand side of the first of eqns. (178). Since the solution corner forces are degrees-of-freedom of 

the system, for each unknown corner force, a single equation is constructed by putting the singularity 

point 𝐱0 outside of 𝐴 near the corner, and by using the single component of the TGF.  

 

 Having constructed all the equations for the unknown degrees-of-freedom, enforcing the values 

of the know degrees-of-freedom yields a linear system to solve for the boundary values of 𝑢, 𝜙𝑡, ℳ𝑡 
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and 𝑉̅𝑛. 

 

17. Calculation of Boundary Tensorial Quantities from the Boundary Solution 

 

 Once the boundary values of 𝑢, 𝜙𝑡, ℳ𝑡 and 𝑉̅𝑛 are known, finding all the plate tensorial values on 

the boundary in 𝑛𝑡–system can be done as follows. 

 

From eqns. (127) and (128) of §12, 

ℳ𝑡 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑢,𝑛𝑛 + 𝜈𝑢,𝑡𝑡 + 𝜈𝑐𝑢,𝑛 )      ⇒     𝑢,𝑛𝑛 = −𝜈𝑢,𝑡𝑡 − 𝜈𝑐𝑢,𝑛 −

12(1 − 𝜈2)

𝐸ℎ3
ℳ𝑡 .    (189) 

Substituting the interpolations of §15, i.e., 𝑢,𝑡𝑡 = 𝐴,𝑡𝑡
𝐼 𝑣𝐼,  𝜙𝑡 = −𝑢,𝑛 = 𝐵𝐼𝑣𝐼 and ℳ𝑡 = 𝐶𝐼𝑣𝐼 into 

eqn. (189) yields 

𝑢,𝑛𝑛 = 𝐹𝐼𝑣𝐼 ,             𝐹𝐼 = −𝜈𝐴,𝑡𝑡
𝐼 + 𝜈𝑐𝐵𝐼 −

12(1 − 𝜈2)

𝐸ℎ3
𝐶𝐼 ,                                                                      (190) 

and 

𝑢,𝑛𝑛𝑡 = 𝐹,𝑡
𝐼𝑣𝐼 ,           𝐹,𝑡

𝐼 = −𝜈𝐴,𝑡𝑡𝑡
𝐼 + 𝜈𝑐𝐵,𝑡

𝐼 −
12(1 − 𝜈2)

𝐸ℎ3
𝐶,𝑡

𝐼  ,                                                                   (191) 

where 𝑣𝐼 is the vector of degrees-of-freedom given by eqn. (176) of §15. Next, from eqn. (132) of §12, 

𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑢,𝑛𝑛𝑛+ (2 − 𝜈)𝑢,𝑛𝑡𝑡+ 𝑐𝑢,𝑛𝑛 − (3 − 𝜈)𝑐𝑢,𝑡𝑡 − 𝑐2𝑢,𝑛 ] .                                      (192) 

Note that 𝑐,𝑡 = 0 was used in writing down eqn. (192), i.e., the boundary element in §15 has constant 

curvature. So, solving eqn. (192) for 𝑢,𝑛𝑛𝑛 gives 

𝑢,𝑛𝑛𝑛 = (3 − 𝜈)𝑐𝑢,𝑡𝑡 + 𝑐2𝑢,𝑛 − (2 − 𝜈)𝑢,𝑛𝑡𝑡− 𝑐𝑢,𝑛𝑛 −
12(1 − 𝜈2)

𝐸ℎ3
𝑉̅𝑛 .                                               (193) 

Now, putting 𝜙𝑡,𝑡𝑡 = −𝑢,𝑛𝑡𝑡 = 𝐵,𝑡𝑡
𝐼 𝑣𝐼, eqn. (190) and 𝑉̅𝑛 = 𝐷𝐼𝑣𝐼 into (193), one obtains 

𝑢,𝑛𝑛𝑛 = 𝐺𝐼𝑣𝐼 ,          𝐺𝐼 = (3 − 𝜈)𝑐𝐴,𝑡𝑡
𝐼 − 𝑐2𝐵𝐼 + (2 − 𝜈)𝐵,𝑡𝑡

𝐼 − 𝑐𝐹𝐼 −
12(1 − 𝜈2)

𝐸ℎ3
𝐷𝐼  .                  (194) 

 

 Turning attention to the tensors 𝐌 and 𝐕, into the expressions for the moments, i.e., eqns. (127) 

and (128) of §12, substitute the interpolations from §15 and eqn. (190) to obtain the interpolations for the 

moment components 

𝑀𝑛𝑛 = −𝑀𝑡𝑡 = 𝑀𝐼𝑣𝐼 ,          𝑀𝐼 = −
𝐸ℎ3

12(1 + 𝜈)
 ( 𝐵,𝑡

𝐼 + 𝑐𝐴,𝑡
𝐼  )  ,                                                                       , 

𝑀𝑛𝑡 = 𝐶𝐼𝑣𝐼 ,                                                                                                                                                       (195) 

𝑀𝑡𝑛 = 𝑁𝐼𝑣𝐼 ,          𝑁𝐼 =
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝐴,𝑡𝑡

𝐼 − 𝑐𝐵𝐼 + 𝜈𝐹𝐼 ) .                                                                                

Finally, putting the interpolations of §15 and eqns. (190), (191) and (194) into eqns. (131) of §12, the 

components of the shear vector are 

𝑉𝑛 = 𝑃𝐼𝑣𝐼 ,          𝑃𝐼 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( −2𝑐𝐴,𝑡𝑡

𝐼 + 𝑐2𝐵𝐼 − 𝐵,𝑡𝑡
𝐼 + 𝑐𝐹𝐼 + 𝐺𝐼 ) ,                                               

𝑉𝑡 = 𝑄𝐼𝑣𝐼 ,          𝑄𝐼 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝐴,𝑡𝑡𝑡

𝐼 − 𝑐𝐵,𝑡
𝐼 + 𝐹𝐼 ) .                                                                   (196) 
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Notwithstanding, once the various tensors are known in the boundary 𝑛𝑡–system, they may be transferred 

to the 𝑥𝑦–system via eqns. (133) and (134) of §12. 

 

Looking at Fig. 11 of §15, at either node 0 or 1 of the element, 𝑢, 𝑢,𝑡, 𝑢,𝑛 = −𝜙𝑡, 𝑢,𝑛𝑡 = −𝜙𝑡,𝑡 

and ℳ𝑡 = 𝑀𝑛𝑡 are known from the nodal degrees-of-freedom, and thus, these quantities are continuous 

from one element to another. From eqns. (127) and (128) of §12, so is 𝑀𝑛𝑛 = −𝑀𝑡𝑡. The remaining 

tensor components are, most generally, discontinuous from element to element, i.e., 𝑀𝑡𝑛, 𝑉𝑛 and 𝑉𝑡. So, to 

calculate these quantities at the six-degree-of-freedom nodes (nodes 0 or 1 in Fig. 11 of §15), averaging 

between adjacent boundary elements is required, which averaging introduces some amount of error. This 

error will be discussed below in §19. 

 

18. Calculation of Interior Tensorial Quantities from the Boundary Solution 

 

 Once the boundary values of 𝑢, 𝜙𝑡, ℳ𝑡 and 𝑉̅𝑛 are known, and the solution corner forces c. f.𝐼 are 

known, the solution in the interior of the domain 𝐴 can be calculated by putting the interpolations (177) of 

§15 into eqns. (93) and (95) through (97) of §10. Thus, 

𝑢(𝐱0) = 𝐿𝑧 − 𝐾𝑧𝐼𝑣𝐼 ,               𝑢:𝑖(𝐱
0) = 𝐿:𝑖

𝑧 − 𝐾:𝑖
𝑧𝐼𝑣𝐼 ,                                                                                        

𝑢:𝑖𝑗(𝐱
0) = 𝐿:𝑖𝑗

𝑧 − 𝐾:𝑖𝑗
𝑧𝐼𝑣𝐼 ,          ∇0

2𝑢:𝑖(𝐱
0) = ∇0

2𝐿:𝑖
𝑧 − ∇0

2𝐾:𝑖
𝑧𝐼𝑣𝐼 ,                                                             (197) 

where 

𝐿𝑧 = ∫𝑞𝑢𝑧d𝐴

0

𝐴

 ,                    𝐾𝑧𝐼 = ∫( 𝐴𝐼𝑉̅𝑛
𝑧 + 𝐵𝐼ℳ𝑡

𝑧 − 𝐶𝐼𝜙𝑡
𝑧 − 𝐷𝐼𝑢𝑧 )d𝑡

0

𝑡

 ,                                                

𝐿:𝑖
𝑧 = ∫𝑞𝑢:𝑖

𝑧d𝐴

0

𝐴

 ,                   𝐾:𝑖
𝑧𝐼 = ∫( 𝐴𝐼𝑉̅𝑛:𝑖

𝑧 + 𝐵𝐼ℳ𝑡:𝑖
𝑧 − 𝐶𝐼𝜙𝑡:𝑖

𝑧 − 𝐷𝐼𝑢:𝑖
𝑧  )d𝑡

0

𝑡

 ,                                            

𝐿:𝑖𝑗
𝑧 = ∫𝑞𝑢:𝑖𝑗

𝑧 d𝐴

0

𝐴

 ,                𝐾:𝑖𝑗
𝑧𝐼 = ∫( 𝐴𝐼𝑉̅𝑛:𝑖𝑗

𝑧 + 𝐵𝐼ℳ𝑡:𝑖𝑗
𝑧 − 𝐶𝐼𝜙𝑡:𝑖𝑗

𝑧 − 𝐷𝐼𝑢:𝑖𝑗
𝑧  )d𝑡

0

𝑡

 ,                                     

∇0
2𝐿:𝑖

𝑧 = ∫𝑞∇0
2𝑢:𝑖

𝑧d𝐴

0

𝐴

 ,          ∇0
2𝐾:𝑖

𝑧𝐼 = ∫( 𝐴𝐼∇0
2𝑉̅𝑛:𝑖

𝑧 + 𝐵𝐼∇0
2ℳ𝑡:𝑖

𝑧 − 𝐶𝐼∇0
2𝜙𝑡:𝑖

𝑧 − 𝐷𝐼∇0
2𝑢:𝑖

𝑧 )d𝑡

0

𝑡

 .      (198) 

Similarly to what was described earlier by Fig. 18, and eqns. (187) and (188) of §16, the terms due to the 

corner forces of the TGF 

+(𝑀𝑛𝑛
𝑧 )0𝑢 − (𝑀𝑛𝑛

𝑧 )1𝑢 ,                 + (𝑀𝑛𝑛:𝑖
𝑧 )0𝑢 − (𝑀𝑛𝑛:𝑖

𝑧 )1𝑢 ,                                                                       

+(𝑀𝑛𝑛:𝑖𝑗
𝑧 )

0
𝑢 − (𝑀𝑛𝑛:𝑖𝑗

𝑧 )
1
𝑢 ,         + (∇0

2𝑀𝑛𝑛:𝑖
𝑧 )0𝑢 − (∇0

2𝑀𝑛𝑛:𝑖
𝑧 )1𝑢                                                   (199) 

need to be added to the right-hand sides of eqns. (197), and the terms due to the solution corner forces 

+𝑢𝑧c. f.𝐼 ,         + 𝑢:𝑖
𝑧c. f.𝐼 ,         + 𝑢:𝑖𝑗

𝑧 c. f.𝐼 ,         + ∇0
2𝑢:𝑖

𝑧c. f.𝐼                                                                 (200) 

also need to be added to the right-hand sides of eqns. (197). 

 

19. Alternate Calculation of the Shear Vector 

 

As it turns out, for the boundary element of §15, for most problems, the calculation of the shear 

vector 𝐕 in the interior of the plate 𝐴 using the fourth of eqns. (197) and (198) of §18 is unacceptably 

inaccurate. Additionally, calculation of the components of 𝐕 on the boundary by employing eqns. (196) of 
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§17 (via nodal averaging between adjacent elements) is inaccurate for some problems. The sources of 

these inaccuracies will be discussed later in §22. 

 

Consequently, the shear vector needs to be calculated by an alternate method, viz., by numerical 
 

  
Figure 19. Differentiation cell in normalized 

                  𝛏–space. 

Figure 20. Differentiation cell in physical space. 

 

differentiation of the moment field via 

𝑉𝑥 = 𝑀𝑥𝑦,𝑥 + 𝑀𝑦𝑦,𝑦 ,          𝑉𝑦 = −𝑀𝑥𝑥,𝑥 − 𝑀𝑦𝑥,𝑦 .                                                                                     (201) 

 

 Figures 19 and 20 show schematics of the differentiation cell, which cell, actually, is just a bi- 

quadratic iso-parametric finite element. Note that the normalized 𝛏–space is spanned by 

𝜉0 ∈ [ −1 , 1 ]  × 𝜉1 ∈ [ −1 , 1 ] . Notwithstanding, given the quadratics 

𝑓0 =
1

2
 (−𝜉 + 𝜉2) ,          𝑓1 = 1 − 𝜉2 ,          𝑓2 =

1

2
 (𝜉 + 𝜉2) ,                                                             (202) 

the interpolation functions for the cell are 

𝑆0 = 𝑓0(𝜉0)𝑓
0(𝜉1) 𝑆1 = 𝑓1(𝜉0)𝑓

0(𝜉1) 𝑆2 = 𝑓2(𝜉0)𝑓
0(𝜉1)

𝑆3 = 𝑓0(𝜉0)𝑓
1(𝜉1) 𝑆4 = 𝑓1(𝜉0)𝑓

1(𝜉1) 𝑆5 = 𝑓2(𝜉0)𝑓
1(𝜉1)

𝑆6 = 𝑓0(𝜉0)𝑓
2(𝜉1) 𝑆7 = 𝑓1(𝜉0)𝑓

2(𝜉1) 𝑆8 = 𝑓2(𝜉0)𝑓
2(𝜉1)

 .                                                         (203) 

The geometry 𝑥𝑖 and moment tensor 𝑀𝑖𝑗 are interpolated within the cell via  

𝑥𝑖 = 𝑆𝐼𝑥𝐼𝑖 ,          𝑀𝑖𝑗 = 𝑆𝐼𝑀𝐼𝑖𝑗 ,                                                                                                                      (204) 

where 𝑥𝐼𝑖 are the physical nodal coordinates of the cell, and 𝑀𝐼𝑖𝑗 are the nodal values of the moment 

tensor. To calculate the derivatives (201), one sees 

d𝑥𝑖 =
𝜕𝑥𝑖

𝜕𝜉𝛼
d𝜉𝛼 ≡ 𝐴𝑖𝛼d𝜉𝛼  ,       𝐴𝑖𝛼 =

𝜕𝑆𝐼

𝜕𝜉𝛼
𝑥𝐼𝑖 = 𝑆,𝛼

𝐼 𝑥𝐼𝑖  ⇒  d𝜉𝛼 =
𝜕𝜉𝛼

𝜕𝑥𝑖
d𝑥𝑖 ,         

𝜕𝜉𝛼

𝜕𝑥𝑖
= 𝐴𝛼𝑖

−1 .        (205) 

Thus, the physical derivatives of the interpolations are 

𝜕𝑆𝐼

𝜕𝑥𝑖
= 𝑆,𝑖

𝐼 =
𝜕𝑆𝐼

𝜕𝜉𝛼
 
𝜕𝜉𝛼

𝜕𝑥𝑖
= 𝑆,𝛼

𝐼 𝐴𝛼𝑖
−1                                                                                                                     (206) 

so that the derivatives of the moments are 

𝑀𝑖𝑗,𝑘 = 𝑆,𝑘
𝐼 𝑀𝐼𝑖𝑗 .                                                                                                                                                (207) 
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Finally then, via eqns. (207), the derivatives (201) are calculated numerically as 

𝑉𝑥 = 𝑆,𝑥
𝐼 𝑀𝐼𝑥𝑦 + 𝑆,𝑦

𝐼 𝑀𝐼𝑦𝑦 ,          𝑉𝑦 = −𝑆,𝑥
𝐼 𝑀𝐼𝑥𝑥 − 𝑆,𝑦

𝐼 𝑀𝐼𝑦𝑥 .                                                                          (208) 

 

If a computational node is on a corner of the boundary, then eqns. (208) are evaluated at either 

nodes 0, 2, 6 or 8 of the cell. If the node is on a smooth portion of the boundary, then the derivatives are 

evaluated at either nodes 1, 3, 5 or 7 of the cell. The derivatives of points internal to 𝐴 are evaluated at 

point 4 of the cell. Consequently, the derivatives at the corners are the least accurate, while the derivatives 

at internal points are the most accurate. 

 

20. Numerical Example − Bubble Distributed Load on a Rectangular Plate 

 

 Here, the solution presented previously in §13 is solved numerically. Only the upper right 

quadrant of the domain in Fig. 8 of that section is analyzed, owing to 𝑥 = 0 and 𝑦 = 0 being symmetry 

boundaries. The boundary conditions are 

𝑥 = 0  and  𝑦 = 0  ⇒   𝜙𝑡 = 𝑉̅𝑛 = 0 ,          𝑥 =
𝐿

2
  and  𝑦 =

𝐻

2
  ⇒   𝑢 = ℳ𝑡 = 0 .                            (209) 

Also, since 𝜙𝑡,𝑡 = −𝑢,𝑛𝑡 = 0 on 𝑥 = 0 and 𝑦 = 0, ℳ𝑛 = 0 so that the corner forces at the three corners 

excluding the upper right corner are known to be zero (the one at the upper right corner is unknown). The 

constants used in the calculation are 

𝐸 = 3.0 × 107 psi ,      𝜈 = 0.3 ,     ℎ = 1.0 in ,     𝐿 = 360 in ,     𝐻 = 240 in ,     𝐹 = 10000 lb .  (210) 

 

 
Figure 21. Computational grid used for the problem, as explained in the text. 

 

 The computational grid used is shown directly above in Fig. 21. The grid (excluding the red 

points) consists of an array of 36 by 24 points. The black points are on the boundary. Running between 

the black points are 116 boundary elements (the mid-point nodes 2 of each element are not shown, cf., 

Fig. 11 of §15). The boundary points at the corners are double nodes, with adjacent boundary elements 

belonging to the two different faces of each corner. In the numerical solution, the continuity of the 
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displacement 𝑢 at each double node is not enforced explicitly, but they do turn out to be continuous in the 

numerical solution (to 5 digits or so). The domain is filled with a 35 by 23 array of 805 integration cells, 

cf., Figs. 16 and 17 of §16. Integrations along the boundary are carried out using the 16–point Gauss-

Legendre rule, with the integration cells using 16 by 16 points. The 34 by 22 array of 748 blue points are 

in the interior of the domain, and these points are where the interior solution is calculated. The domain 

additionally is spanned by a 34 by 22 array of differentiation cells, cf., Figs. 19 and 20 of §18, which cells 

are used to calculate the components of the shear vector 𝐕 at both the black and blue points. Note that 

these cells overlap, so that each blue point corresponds to the central point 4 of a differentiation cell. 

Finally, the red points in the figure (outside of the domain of the plate) are where the singularities of the 

Green’s functions are placed to generate equations for the unknown boundary values. The patterns of 

these points along the right and top faces correspond to the boundary condition case 2 of Fig. 13 in §16; 

while those along the left and bottom faces, to case 3 of Fig. 14 in §16. One additional red point is placed 

near the upper right corner (to generate an equation for the unknown corner force there).  
 

  
Figure 22. Numerical results for 𝑢 at 𝑦 = 0 

                  compared to the exact solution. 

Figure 23. Numerical results for ℳ𝑡 at 𝑦 = 0 

                  compared to the exact solution. 
 

 Figures 22 and 23 above show the numerically calculated (open circles) and exact solution (solid 

lines) of the solved-for boundary values along the bottom face 𝑦 = 0. The displacement 𝑢 in Fig. 22 is 

highly accurate. The edge bending moment ℳ𝑡 in Fig. 23 is also very accurate, except that the numerical 

solution reaches its extremum at 𝑥 ≈ 10 in (as compared to 𝑥 = 0 for the exact solution). 

 

 Figures 24 through 26 below show the results for, respectively, 𝜙𝑦, 𝑀𝑥𝑦 and 𝑉𝑥 along 𝑦 = 0. The 

rotation in Fig. 24 𝜙𝑦 = −𝜙𝑛 = −𝑢,𝑡 comes from nodal values of the boundary elements, and is highly 

accurate. The moment component 𝑀𝑥𝑦 in Fig. 25 is obtained from the boundary nodal-averaging 

technique described in §17, and it is also highly accurate. Finally, 𝑉𝑥 in Fig. 26 is obtained by using the 

differentiation cells, as described in §19. While the values calculated for 𝑉𝑥 are highly accurate for 

15 ≲ 𝑥 ≲ 170 in, there is some inaccuracy near the boundaries. Specifically, there is a minor inaccuracy 

at 𝑥 ≈ 170 in, and for 0 ≲ 𝑥 ≲ 15 in, the numerical solution rises above the exact solution, although the 

absolute magnitude of the error is not substantial. Notwithstanding, these inaccuracies stem from the 

difficulty of finding third-order derivatives numerically, as will be discussed later in §22. 
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Figure 24. Numerical results for 𝜙𝑦 at 𝑦 = 0 

                  compared to the exact solution. 

Figure 25. Numerical results for 𝑀𝑥𝑦 at 𝑦 = 0 

                 compared to the exact solution. 
 

  
Figure 26. Numerical results for 𝑉𝑥 at 𝑦 = 0 

                  compared to the exact solution. 

Figure 27. Numerical results for 𝜙𝑡 at 𝑥 = 𝐿 2⁄  

                  compared to the exact solution. 
 

 Figure 27 above and Fig. 28 below show the solved-for boundary values, i.e., 𝜙𝑡 and 𝑉̅𝑛 

respectively, on the right face 𝑥 = 𝐿 2⁄  of the domain. These numerical results are highly accurate. 

 

 Figures 29 and 30 below show the results for, respectively, 𝑀𝑥𝑥 and 𝑉𝑥, also on the face 𝑥 = 𝐿 2⁄ . 

The numerical calculation of the twisting moment 𝑀𝑥𝑥 is, again, highly accurate, which follows from the 

fact that 𝑀𝑥𝑥 is proportional to boundary element nodal values. The numerical results for 𝑉𝑥 in Fig. 30 are 

also accurate, except for the slight inaccuracy near the boundary for 0 ≲ 𝑥 ≲ 5 in. 
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Figure 28. Numerical results for 𝑉̅𝑛 at 𝑥 = 𝐿 2⁄  

                  compared to the exact solution. 

Figure 29. Numerical results for 𝑀𝑥𝑥 at 𝑥 = 𝐿 2⁄  

                  compared to the exact solution. 
 

  
Figure 30. Numerical results for 𝑉𝑥 at 𝑥 = 𝐿 2⁄  

                  compared to the exact solution. 

Figure 31. Numerical results for 𝑢 at 

                  𝑥 = 92.5714 in compared to the exact 

                  solution. 
 

 Figure 31 above and Figs. 32 through 34 below show the numerical results along a vertical line 

through the domain located approximately mid-way between the left and right boundaries. Once again, 

from Fig. 31, the numerically calculated displacement 𝑢 is very accurate, as are the calculated 

components of the rotation vector 𝛟 in Fig. 32. The calculated components of the moment tensor 𝐌 in 

Fig. 33, additionally, are very accurate. Finally, the numerically calculated components of the shear 

vector 𝐕 in Fig. 34 are accurate, except for the inaccuracy in 𝑉𝑦 near the boundary at 0 ≲ 𝑥 ≲ 10 in. 

 

 The last numerical result concerns the corner force at the upper right corner. To the nearest tenth, 

the exact value of the force is −745.6 lb, while the numerically calculated value is −745.1 lb. 
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 All in all, except for near the boundary in some cases, with regard to the shear vector 𝐕, the 

numerical method produces highly accurate results. 

  
Figure 32. Numerical results for 𝜙𝑥 (red) and 

                  𝜙𝑦 (blue) at 𝑥 = 92.5714 in compared 

                  to the exact solution. 

Figure 33. Numerical results for 𝑀𝑥𝑥 (red), 

                  𝑀𝑥𝑦 (blue) and 𝑀𝑦𝑥 (purple) at 

                  𝑥 = 92.5714 in compared to the exact 

                  solution. 
 

 

 

 

21. Numerical Example – Sinusoidal 

      Transverse Edge Load on an Annular 

      Cantilever Plate 

 

          Here, the problem solved analytically 

in §14 is solved numerically. The boundary 

conditions for the problem were given previously 

by eqns. (147) through (149) of §14, and the 

constants used were given by eqn. (159). 

 

          The computational grid used for the 

analysis is shown below in Fig. 35. As was the 

case previously in §20, the black points are on the 

boundary of the domain, the blue points are in the 

interior of the domain, and the red points are 

Figure 34. Numerical results for 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑥 = 92.5714 in compared 

                  to the exact solution. 

outside of the domain. Excluding the red points, 

the grid is a 25 (radial) by 35 (tangential) array of 

points, making for 116 boundary elements, 759 

interior points, and 759 differentiation cells. Like  

in Fig. 21 of §20, the boundary elements run between the black points, and their mid-nodes (i.e., node 2, 

cf., Fig.11 of §15) are not shown. Also, as previously, the black nodes on the corners are double nodes. 

Since there is no distributed load, there are no integration cells. Once again, the red points in the figure 

are where the singularities 𝐱0 of the Green’s functions are placed to generate equations for the unknown 

boundary values (and corner forces). The pattern of the red points at the inner radius 𝑟 = 𝑎 correspond to 

the boundary condition case 1 (Fig. 12 in §16); the pattern at the faces 𝜃 = 0 and 𝜃 = 𝜋 2⁄ , to 
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case 2 (Fig. 13 in §16); and finally, the pattern at the outer radius 𝑟 = 𝑏, to case 4 (Fig. 15 of §16). The 

corner forces on the inner radius are known to be zero, and the two red points near the outer radius 

at 𝜃 = 0 and 𝜃 = 𝜋 2⁄  generate equations for the unknown corner forces at those two points. Note that 

these two red points are not symmetrically placed. While the author finds this to be quite curious, if these 

two points are symmetrically placed, then the resulting system of equations is singular (rank 429 out of 

430 equations). Nonsymmetric placement yields full rank. In any case, the boundary integrations are 

carried out using the 32–point Gauss-Legendre quadrature rule.  
 

 
Figure 35. Computational grid for the problem as explained in the text. 

 

 

 Figures 36 and 37 below show the numerically calculated results (plotted points) compared to the 

exact solution (solid lines) for the solved-for boundary values on the face 𝜃 = 0. As seen from Fig. 36, 

the numerical results for the rotation 𝜙𝑡 are highly accurate. Figure 37 gives the results for 𝑉̅𝑛, which can 

be seen is also very accurate (except near the outer radius at 340 ≲ 𝑟 ≲ 360 in, where there is some 

minor error). 

 

 Figures 38 and 39 below give the results for, respectively, the solved-for boundary values 𝑢 

and 𝜙𝑡 on the face at the outer radius 𝑟 = 𝑏. Both results, i.e., 𝑢 and 𝜙𝑡, are highly accurate. 
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Figure 36. Numerical results for 𝜙𝑡 at 𝜃 = 0 

                 compared to the exact solution. 
Figure 37. Numerical results for 𝑉̅𝑛 at 𝜃 = 0 

                 compared to the exact solution. 

  
Figure 38. Numerical results for 𝑢 at 𝑟 = 𝑏 

                 compared to the exact solution. 

Figure 39. Numerical results for 𝜙𝑡 at 𝑟 = 𝑏 

                 compared to the exact solution. 
 

 Figures 40 and 41 below show the results for the solved-for boundary values ℳ𝑡 and 𝑉̅𝑛, 

respectively, on the inner radius 𝑟 = 𝑎. From Fig. 41, one sees that the results for ℳ𝑡 are highly accurate. 

From Fig. 41, while the absolute magnitudes of the calculated values of 𝑉̅𝑛 are quite accurate, there is 

some small amount of oscillation present in the results, which indicates possibly that the system of 

equations is slightly ill-conditioned. Nevertheless, an initial attempt at solving this problem with the 

straight-line version of the boundary element of §15 gave highly inaccurate results for 𝑉̅𝑛. Thus, the use of 

curved boundary elements is an absolute necessity. 
 

Corner force at (𝑟, 𝜃) Exact value (lb) Numerically calculated value (lb) Relative error (%) 

(𝑏, 0) −3935.94 −3893.54 −1.08 

(𝑏, 𝜋 2⁄ ) 3935.94 4005.38 1.76 
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Finally, concerning the solved-for boundary values, the table directly above shows the values of 

the exact and numerically calculated non-zero corner forces. As is evident, the numerical values are not 

exactly anti-symmetric (as they should be). This probably is because of the (necessarily) non-symmetric 

placement of the red (singularity) points for these corner forces, as was described above concerning 

Fig. 35. Also, perhaps again, this is due to a possibly ill-conditioned system. Notwithstanding, the relative 

error of the numerical results is acceptably small.  
 

  
Figure 40. Numerical results for ℳ𝑡 at 𝑟 = 𝑎 

                 compared to the exact solution. 
Figure 41. Numerical results for 𝑉̅𝑛 at 𝑟 = 𝑎 

                 compared to the exact solution. 

 

 Figures 42 through 45 below show the calculated results for the tensorial quantities along a radial 

line of points through the domain of the plate located at 𝜃 = 9𝜋 68⁄ ≈ 23.83°. As Figs. 42 and 43 show, 

respectively, the calculated results for the displacement 𝑢 and rotation vector 𝛟 are highly accurate. 
 

  
Figure 42. Numerical results for 𝑢 at 𝜃 ≈ 23.83° 
                 compared to the exact solution. 

Figure 43. Numerical results for 𝜙𝑥 (red) and 

                 𝜙𝑦 (blue) at 𝜃 ≈ 23.83° compared to 

                 the exact solution. 
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Concerning the results for the moment tensor 𝐌, as per Fig. 44, once again the numerical results are 

highly accurate, except for small inaccuracies at the outer radius 𝑟 = 𝑏 = 360 in for the components 𝑀𝑥𝑥 

and 𝑀𝑥𝑦. Finally, Fig. 45 gives the results for the shear vector 𝐕. For 0 ≤ 𝑟 ≲ 330 in, the numerically 

calculated values of 𝑉𝑖 are accurate. But, as one approaches the outer radius of the domain, the results 

exhibit fairly significant error (especially 𝑉𝑦). 
 

  
Figure 44. Numerical results for 𝑀𝑥𝑥 (red), 

                  𝑀𝑥𝑦 (blue) and 𝑀𝑦𝑥 (purple) at 

                  𝜃 ≈ 23.83° compared to the exact 

                  solution. 

Figure 45. Numerical results for 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝜃 ≈ 23.83° compared to 

                  the exact solution. 

 

 For the circular arc of grid-points located at 𝑟 = 207.8461 in, Figs. 46 through 49 below present 

the results for the tensorial quantities. The numerical results for the displacement 𝑢, the rotation vector 𝛟 
 

  
Figure 46. Numerical results for 𝑢 at 

                  𝑟 = 207.8461 in compared to the 

                  exact solution. 

Figure 47. Numerical results for 𝜙𝑥 (red) and 

                  𝜙𝑦 (blue) at 𝑟 = 207.8461 in 

                  compared to the exact solution. 
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the moment tensor 𝐌, and the shear vector 𝐕, as seen from Figs. 46 through 49 respectively, all are highly 

accurate. 
 

  
Figure 48. Numerical results for 𝑀𝑥𝑥 (red), 

                 𝑀𝑥𝑦 (blue) and 𝑀𝑦𝑥 (purple) at 

                  𝑟 = 207.8461 in compared to the 

                 exact solution. 

Figure 49. Numerical results for 𝑉𝑥 (red) and 

                 𝑉𝑦 (blue) at 𝑟 = 207.8461 in compared 

                 to the exact solution. 

 

22. Closing Comments 

 

 Here, a few things learned by the author, during performing this work, are discussed. First, if the 

plate has curved boundaries, then the use of curved boundary elements is required to obtain accurate 

solutions. 

 

 The orders of interpolations used for the boundary values of 𝑢, 𝜙𝑡, ℳ𝑡 and 𝑉̅𝑛 must decrease by 

one each time, like in §15, where the orders, respectively, are 4, 3, 2 and 1. If this is not done, then either 

oscillatory solutions are obtained, or smooth solutions which do not converge to the correct results are 

obtained. 

 

 The biggest difficulty is the calculation of accurate values of the components of the shear 

vector 𝐕, especially on the boundary. If more accurate values of 𝐕 on the boundary can be obtained, then 

the differentiation cells of §19 would only need to be used at interior points, which would be more 

accurate. One possibility for obtaining more accurate values of 𝐕 on the boundary would be to employ 

higher order interpolations in the boundary element, so that all the components of the moment 𝐌 (or even 

all the components of both 𝐌 and 𝐕) would be continuous on the boundary. Higher order interpolations, 

though, would yield more degrees-of-freedom per element, and would require the use of more singularity 

points than shown in Figs. 12 through 15 of §16. 

 

 Finally, it appears that using the fourth of eqns. (197) and (198) of §18 to calculate 𝐕 in the 

interior, as opposed to using the differentiation cells, requires that the calculated boundary values be 

extremely accurate. Perhaps higher order interpolations in the boundary element would help in this 

regard. 


