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The Boundary Element Method for Two-Dimensional Linear Elasticity

1. Hooke’s Law

Hooke’s Law is

Exx =S [ (1 =V )0y, — v*oyy] , Eyy =S [(1- V*)0yy — V' Oy |, Exy = SOyxy , (D

where, respectively, &;; and o;; are the components of the strain and stress tensors, and

S_1+v
=5

v* =v (plane strain), v

*

v
=17 (plane stress). (2)

In eqns. (2), E is Young’s modulus, and v is Poisson’s ratio. Also,

plane strain: ¢,, =0, o0,, = v(oxx + ayy)

plane stress: o,, =0, ¢&,, = —L(exx +¢€ ) ' )
1—v ry
Inversely, eqns. (1) are
1
Oxx = m [ (1 —v)ex + V*Syy ] ’
Oyy = SaA—2) [(A—vD)eyy +vien ], (4)
1

Oxy =5 Exy -

Finally, eqns. (4) may be written in tensorial form as
1 v* 1
0ij = Lijki€ki » Lijri = 5 [Iijkl +m6ij6kl] , Lijk = 5 (6:6j1 + 611 6) 5)

where §;; is the two-dimensional identity matrix (or Kronecker delta).

2. Unit Point Load in an Infinite Plate in

Figure 1. Unit point load applied at the
origin of an infinite plate in the
x-direction.

the x-Direction

Figure 1 at left depicts a unit point load applied at
the origin of an infinite plate in the x-direction. In polar
coordinates, it is seen that the stresses

kq
Opy = - cos@ ,
k
Org = 72 sinf , (6)
ka

Ogg = — cos 0
00 =

are of the form which may be in equilibrium with the
point load, with k; > 0 and k, > 0. In the figure, n is
the outward-pointing unit normal on the circle of
radius r centered at the origin, which is the same as the
radial unit base vector e,.. Note that the stress
components (6) satisfy the equilibrium equations
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1 1
Oy +—0rg0 + ;(Urr —0gp) =0, Orer + —0ge0 +—0rg = 0 ™)

identically. The traction vector on the circle of Fig. 1 is T = T,.e,. + Tyeqg, with T, = g, and Ty = 0,¢.
Or, in rectangular components via

Tel rcos® —sin6 Tr]
[Ty]_[sine cos 6 ][TQ ®)

the traction components are

1 1
Tx=—;(k1c0529+kzsin29) , Ty=—;(k1—k2)sin9cost9 . (9)
Equilibrium requires that
2 2m
f T,rd6 = -1, f T,rd6 =0 . (10)
0 0

The first of eqns. (10) gives
1
while the second of eqns. (10) is satisfied identically.

Using Hooke’s Law (1), the stresses (6) give the strains

. . cosf . . cosf
& = =S[(A=v)ky +v7k; ] o ggg =S [vki + (1 —v )k, ] o
sin 6
Erg = Skz (12)
In polar coordinates the strain-displacement relations are
1 1 1/1 1
Err =Ury,  Egg = “Ugp tTUr, &g = E(;ur,e +Ugr ——Ug ) : (13)

where u, and uy are the displacement components. Now, using the first of eqns. (12) to integrate the first
of eqns. (13) yields

u=-S[(A—-vky+v'k, ]| Inrcosd + f'(0) , (14)

where f(0) is a function of integration. Next, using the second of eqns. (12) and eqn. (14) to integrate the
second of eqns. (13), one obtains

ug =S[vki + (1 —vHk, ] sin@ +S[(1 —v)k; + vk, ] Inrsind — f(0) + g(r) , (15)

where g(r) is another function of integration. Finally, putting the third of eqns. (12) and eqns. (14)
and (15) into the third of eqns. (13), one sees that the functions of integration may be chosen as f(6) = 0
and g(r) = 0 if

(1-2v)k; —(B3—-2v)k, =0. (16)
So, via eqns. (11) and (16), the constants are
(3-2v") (1-2v")
1= 7 2= T (17)
4n(1 —v*) 4n(1 —v*)

With eqns. (17), the displacements (14) and (15) become

3
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. @B=4)S
S T — vy 4n(1 —v)

One notes that, with eqns. (17), the stresses (6) agree with the expressions for plane stress given on
pg. 129 of the text Theory of Elasticity, 3rd ed., S.P. Timoshenko and J.N. Goodier, McGraw-Hill (1970).

Inrcosé , Ug = [1+ (3 —4v")Inr] sinfb . (18)

Transforming eqns. (18) to rectangular coordinates gives, cf., eqns. (8),

S xy
U, = — 47_[(1 )[(3 4v)lnr+—] uy=m T‘_Z] , (19)

where x = rcos@,y = rsinf and r = \/x? + y?2. Noting that r,, = x/r and r,, = ¥/, using eqns. (19)
and the strain-displacement relations &;; = (ui, it uj,i) /2, one obtains the strains

3 S '(3 W) x nyz
Frx = 41 —v*) | Vi rt |’
e, =S5 [x_,27) (20)
Yo 4wl —vY) | r? r4
S [ y y?
=2 |2a-vyZ+ 221,
Exy 4r(1—v) | ( ) rt ]

and then via eqns. (4) and (20), the stresses are

1 3 — 29 X ny
Taex _4—71(1)[( h )__ 4|
1-— 2x—2 21
%y = 47T(1 ( rt |’ @D
xzy }/3
Oxy =~ 4m(1 — V)[Z(l_ )_+__r_4]'

3. Unit Point Load in an Infinite Plate in the y-Direction

y In Fig. 2 at left, the unit point load is now applied in the
y-direction. By analogy with eqns. (6), one sees that the stress
n=e, components

1 .
aﬂ:—TsmH,
. 22
y Org = —— cosf (22)

2 .
Ogg = — sinf
06 "

can be in equilibrium with the point load, where once again,
kq > 0 and k, > 0. As before, the stresses (22) satisfy the
equilibrium eqns. (7) identically. Also, in rectangular
Figure 2. Unit point load applied at components, the traction vector acting on the circle in Fig. 2 is
the origin of an infinite
plate in the y-direction.

1 1
T, = - (ky — ky)sinf cos O , T, = - (kysin? 6 + k, cos?9) . (23)
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Equilibrium also requires that

21 27
f T,rd6 =0 , f T,rdo = -1 . (24)
0 0

The first of eqns. (24) is satisfied identically, while the second of eqns. (24) gives the relation (11) above.
Omitting the details, when one uses eqns. (22) to calculate the strains, and then when these strains are
integrated to get the displacements, the relation (16) above is also obtained. In short, here the constants k4
and k, are the same as in eqn. (17) above.

Omitting the details then, one obtains

3 1% - S G- avyinr+5 25
e = Ar(1—v*) Lrz 1’ Uy = 4r(1 —v*) vomrTLz | (25)
and

1 y
=——  |a=2vH2Z2 222
xzy
— — 2
Uyy 47_[(1 [(3 T4 ] Y ( 6)
2 .3
x  xy? x

=—— " |20 =vHZ 4+ _ =

Oxy 4n(1—v ) A=vD5E+ r4 r“']

4. The Green’s Functions

Letg j denote the j-direction displacement due to a unit point load applied in the i-direction.
Additionally, the unit point loads are taken to be applied away from the origin at the location (x,, y,). So,
with the notation X = x —x,, Y =y — ypandr = VX? + Y2, eqns. (19) and (25) give

gx = — m[(3—4v)lnr+—] gx—4n(1 v)[ ] 27)

gg,/= W [(3 4v* )lnr+—]

Similarly, let Gk be the stress tensor due to a unit point load in the k-direction. Equations (21) and (26)
then are

G¥, = (3-2 ) 2— YZ GY, = ! (1 2 ) ZXYZ
xx = 41‘[(1 v W= an(1—v) | v |
X . Y XZY Y3

Gl = (1-2v") d ZXZY G, = ! _(3 2 *)Y ZXZY-
XX 4m(1 —vY) vz rt |’ YT 4n(1—vY) i vz rt |’
y oy X Xxy* x3

G =n =~ pa—yy |20Vt

Equations (27) and (28) are termed the Green’s functions for two-dimensional linear elasticity.
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Owing to eqns. (10) and (24) and the Divergence Theorem, the functions (28) possess the
property

fGikj,idA e = }gniai’;dt e = —cey , (29)
A t
where A is the two-dimensional domain of interest, ¢ is the boundary of A (with positive arc length being
measured in the counterclockwise fashion), n; is the outward pointing unit normal on ¢, and e; are the
Cartesian base vectors. The constant in eqn. (29) is ¢ = 1 if the singularity X, is in 4, and ¢ = 0 if X, is

outside of A. Also, since Gi’j- satisfies equilibrium, i.e., Gi’j-,i = 0 everywhere except at Xy (where it is

singular), then consequently, one may multiply eqn. (29) by a displacement field u; underneath the
integral sign to see

f w;Gl A = —cug(xo) . (30)
A

5. The Reciprocal Theorem

Let u; be a (non-singular) displacement field with corresponding stresses o;; that satisfy
equilibrium so that 0;;; = 0. Multiplication of this equation by the Green’s function then
gives g}‘ ;i = 0. Thus, by the product rule of differentiation

(g}cﬂij)j = g0 + 9o = 903 - (31)

Now, since the elasticity tensor in eqn. (5) possesses the symmetries L;jx; = Liyij = Ljiki = Lijik,

95105 = gjiLijpatap = Ghallap = Gl (32)
so that eqn. (31) becomes
(gfoy) , = Gljwi - (33

k

Again, via the product rule of differentiation, (Gi'j-uj) = Gij o + Gl-kjuj,i, which when put into eqn. (33)

yields
—Gljw = =(Glw) , + (950, - (34)

Finally, integrating eqn. (34) over A, and then using the Divergence Theorem and eqn. (30), one obtains
the Reciprocal Theorem, viz.,

cup(xg) = — f nl-Gl-kjujdt + _(f g}‘Tjdt , (35)
t t

where Tj = n;0;; is the traction vector.

6. The Boundary Element Method — Displacement Solution

Figure 3 below shows a schematic of a boundary element. The element is a straight-line segment
joining its two nodes 0 and 1, each of which has nodal displacements u! and nodal tractions T/, where I is
the index of the node. In the element, the displacements and tractions are represented by the linear
interpolations
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=flui T, =f"T{
_L-t t . (36)

t=L
A
B (x".y")
t=0 ﬁ
n t=
(x%,y°%)
(x*.y°)
Figure 3. Schematic of a boundary element Figure 4. Geometry for evaluating the Green’s
showing its unit tangent vector t and its functions along the length of the
outward pointing unit normal vector n. boundary element as a function of t.

When solving for the nodal boundary displacements and tractions, the singularity X, will be taken as

being outside of the domain 4, so that ¢ = 0 in eqn. (35). Putting the interpolations (36) into eqn. (35)
then gives
L

L
0= ~Ait] + BT/, iy = [ mGlif'de B = [gfflac. @D
0 0

To evaluate the Green’s functions in eqns. (37) as a function of s within an element, the geometry
shown in Fig. 4 is used. So, along the element

Iy = (x° - Xo)eyx + (yo - YO)ey = Tox€x + Toy€y ,
X—xg=X =t t+719y, Yy—Yo=Y =t,t+r1y, . (38)

Also, by using 7% = X2 + Y2,
Q=r?=t>+2pt+1§, B = txTox + tyToy | 6 =Ty + 13y - (39)

Now, substitution of eqns. (38) and (39) into eqns. (28), i.e., the formulas for Gl ;» gives the expressions

X t 1 t3 t2 t 1
Gxx=ala+aZQ+a30 +a4Q +a502+a6Q
. X t 1 t3 t2 t 1
ny=ny=a75+a8Q+a9Q +a10Q +a11Q +a12Q2,
. t 1 t3 t? t 1
Gyy 0136+a146— 302 4Q2—a5@—a6@ ) (40)
y t 1 t3 t2 t 1
Gix = Q15 Q + aléa +a17 3 02 + a1 7 02 + a19 57 02 + az0 57 02
y y t 1 t3 t2 t 1
Giy = Gyx = a215+a226+a23@+a24Q +a25Q +a26Q2'

y t 1 t3 t? t 1
Gyy = a275+azsa—ana—aw@—aw@—azo@ )

where the values of the constants a,; through a,g are listed below in Sec. 9. Next, performing the dot
product n; G ; gives, where the values of the constants by through by, are listed below in Sec. 10,
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X t 1 t3 t? t 1
niGix = b16+b26+b3@+b4@+b5@+b6@ )
X t 1 t3 t? t 1
niGiy=b7a+b85+b9@+b10@+b11@+b12@J (41)
y t 1 t3 t? t 1
n;G;, = b136+ b145+ b15@+ b16@+ b17@+ bm@ )
y t 1 3 t2 t 1
n;G;, = b196+ bzoa*‘ b21@+ bzz@"‘ b23@+ b24@ ,
and then substituting eqns. (38) and (39) into eqns. (27) yields
X t2 t 1
gx =basInQ + b266+ b275+ bzsa )
.y 2 t 1
gy:gx:b295+b306+b316: (42)
y t2 t 1
gy = bzsan + b326+ b335+b345 )

where, again, the values of the constants b, 5 through b3, are listed below in Sec. 10.

At this point the integrals in eqns. (37) can be calculated. Namely, substituting eqns. (41) into the
second of eqns. (37), and performing the integrations, one obtains

1
Apoo = I [ =b1l; + (Lby — by)I3 + Lbyly — b3ls + (Lby — by)lg + (Lby — bs)I;
+(Lb5 - b6)18 + LbGIg ] 1]
1
1
Ap1o = I [ —b;I; + (Lb; — bg)I3 + Lbgly — bols + (Lbg — byo)lg + (Lbyg — by1)I;
) +(Lby1 — byp)Ig + Lbysls |,
Ao1r = 7 [ b71y + bgls + bols + byglg + by117 + bizlg |, (43)
1
S 7 [ =b13l; + (Lbyz — b1a)I3 + Lbigly — bysls + (Lbys — byg)lg + (Lbyg — by7)I;
) +(Lby7 — byg)lg + Lbygly |,
Aior = 7 [ b13ly + byals + bysls + biglg + by7l; + biglg |,
1
Ai10 = I [ =b1oly + (Lb1g — byo)I5 + Lbygly — byqls + (Lbyy — byp)le + (Lbyy — by3)Iy
. +(Lbaz — byy)lg + Lbyyly |,
A1 = i [ b1olz + bagls + byyls + byylg + bazl; + baylg ],

where 0 = x and 1 = y have been used for the first two subscripts of Ay j;. The indefinite forms /;(¢) of
the definite integrals I; appearing in eqns. (43) are listed below in Sec. 13. For instance,

I, = I,(L) — 1,(0), etc. Similarly, substituting eqns. (42) into the third of eqns. (37), and performing the
integrations, one finds
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Booo = % [ =baslio + Lbasliy — baely + (Lbye — ba7)ly + (Lbay — bag)ls + Lbagly ],

Boo1 = % [ baslio + baely + ba7ly + bagls |,

Bo1o0 = Bioo = % [ =baoly + (Lbag — b3o)l; + (Lb3g — b31)Is + Lbsil, ], (44)
Bo11 = B1o1 = % [ baoly + b3oly + b31l3] ,

Bi10 = % [ =baslio + Lbysly — baply + (Lbsy — b3z)ly + (Lbsz — b3a)ls + Lbgyly ],

Bi11 = % [ baslio + bszly + basly + bsals ],

where the notation for the subscripts for By j; is the same as that used in eqns. (43), and again, the
indefinite forms of the definite integrals I; are listed in Sec. 13.

o) Having defined all the terms in eqns. (37), the nodal
displacements and tractions on the boundary are solved for
by the following method. Figure 5 at left shows a domain A
o discretized with five boundary elements. The black lines
and points in the figure represent the boundary elements.
Now, putting the singularity X, at each of the five red
A o points, in turn, generates ten algebraic equations relating
the twenty boundary displacements and tractions. At each
black point, two of the boundary quantities are prescribed
with the boundary conditions for the problem.

o) Consequently, the resulting system of ten equations in ten
unknows may then be solved for the remaining boundary
o) quantities.
Figure 5. A boundary element Once the nodal boundary displacements and tractions

discretization of the domain A.  have been found, the displacements at any point in the
interior of A may be found with the discretized form of eqn. (35), i.e., with ¢ = 1 for X in A4,
U (Xo) = —Agjuf + Byj T/ (45)
7. Gradients of the Green’s Functions

Once all the displacements in the problem have been found, one turns attention to the calculation
of the displacement gradients. With the notation df /dxy; = f.;, the gradient of eqn. (35) is

Ui (o) = — 55 niGE ade + fg}’;mT,-dt . (46)
t t

where ¢ = 1, i.e., X is in A, or in discretized form,

L L
uk:m(XO) = _Akjlzmujl' + Bkjl:mTjI , Akjl:m = jniGikj:mfIdt ’ Bij:m = fg;cmfldt . (47)
0 0
Thus, the evaluation of eqns. (47) requires the gradients of the Green’s functions. So, using r.,, = — X /7
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and 7, = — Y /7, one obtains for the gradients of eqns. (28)
Gy =—;{(3—2v*) —i+2X—2]+2Y—2—8)ﬁ}
xxex 4m(1 —v*) r2 r* r* re |}’
GL.. :—;{(S—ZV*)H—A}X—W}
Ly 2m(1 —v*) r4 ré |’
Gy = Gy =—;{(1—2v*)¥+2ﬁ—2x—y3
ryx o myEx 2m(1 —v*) r* ré rée |’
Gy = Gyy = N {—2(1—1/*)i+(7—4v*)y—2—X—2+4X2Y2—4Y—4}
xy:y YEY T T 4n(1 — v 72 A 4 76 r6 [’
Gy = ! {(1—21/*) —i+2X—2]+2Y—2—8ﬂ}
YYE T 4m(1 —v*) r2 r4 r* rée |’
G, =;{(3—2v*))ﬁ—4x—yg} (48)
YV 2m(1 —v*) r4 rée |’
GY -1 {(3—21/*——4ﬂ
X 2m(1 —v*) r ré |’
Gy, —;{(1—2v*)[—l+zy—2]+2X—2—8@}
Y 4n(1 —v*) r2 T r# re |’
Gyyx = G, =—;{—2(1—v*)i+(7—4v*)X—2—Y—2+4XZY2—4X—4}
Xy:x VXX 47.[(1 —V*) r2 r4 r4 r6 16 ’
A S — {(1—2v*)ﬂ+zx—ys—2ﬁ}
XY IYEY T 2m(1 — v*) r4 76 re |’
Gy, =—;{(5—2v*£—4ﬂ}
yyx 2n(1 —v*) r rée |’
Gy, ;{(3—2v*)[—l+zy—2 +2X—2—8XZY2}
vy = 4(1 —v*) r2 T T ré )’
and for the gradients of eqns. (27)
. S X _XY?
gx:x—m {(3—41/ )T—Z—ZT—4} )
. S LY oy
gx:y—m {(5—41/ )——2—} ,
x y S
Gy = Gex = gy T om { r_2 (49)

L R 4v)——2—
Gy« 4 (1 —v*)

S
552 = 0% = g = |7 7 }
Y

AL . e 4v)—— XZ
9vy = an(1 =)

10
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8. The Boundary Element Method — Displacement Gradient Solution

If one attempts to evaluate eqns. (47) when X, on the boundary t, then the resulting integrals are
divergent. Consequently, to calculate the displacement gradients u; ; at the boundary points requires a
different procedure, which procedure is explained below in Sec. 8.2.

8.1. Displacement Gradients in A

Here eqns. (47) may be used to calculate the displacement gradients for points which are inside of
the domain A. So, evaluating the gradients Gl'j .m as a function of t along a boundary element by
substituting eqns. (38) and (39) into eqns. (48), one obtains the expressions

Gl = 1 + t2+ t+ 1+ t4+ t3+ t2+ F o
= €2 C3 Cq Cs Ce ¢7 Ce 3 T Cog
e Q , Q2 Q2 Q2 . Q3 3Q g\? Q3 Q3
t 1 t t t t 1
Giry = C10@+ C11@+ C12 73 02 tCi3 3 03 + 5'1403 t 153 03 + ClGE-l' C17@ )
GZ G t + ‘ + ! + t* + & + t + ‘ + !
x = x = €18 TCloa, T 0 T 21 a3 T2 a3 T3 3 T a3 T 053
Xy:x yx:x QZ (%2 QZ Q3 Q43 Q33 Q23 Q3
t t 1 t t t t 1
Giy:y = Gyxiy = Co6 =+ Co7 5+ Cog 7t oozt G303t G313+ Caa gt Cas gt Caa g
Qz Q? Q? Q4 (3? 2Q Q3 Q3 Q
t t 1 t t t t 1
Gyyx =C35 7+ C36 75+ C37 7T 3853~ Cs73—Co3 —C7 73— C873 — Comg
Q2 Q2 Q2 Q4 Q 5 Q , Q Q Q
t t 1 t t t t 1
Gyyy =C3975 t Caorz T a1 5 —Ci3 3 —Clas —Cis 3~ Cl6 73— C17 73 (50)
Qz Q2 Q Q4 Q3 Qz Q Q
t t 1 t t t t 1
Grrx = C3077 st CuostCuzt 3t 33t CuurmgtCas 5+ Cae 3
Q Q Q Q Q Q3 Q3 Q
o 1 N t2 N t N 1 t* t3 t2 t 1
=G5 T Cr 7Tl 5 Tl 5 03~ Ce a3~ 73~ Cg a3~ Cog s
xx:y 0 02 sz 02 03 Q34 E 3 E 2 E
t t 1 t t t t 1
Ggyx = ijl]x:x =C6 7T C50771TC51 75t Cs275+Cs3 73t Cs4 3+ Cs5-3+Cs6 73T C57 73 »
Q2 Q2 Q2 Q? . Q3 5 Q3 , Q3 Q3 Q3
Ggyy = G}%/xy C18 77 : t Ci9 7 d + ¢z 12 C21 t3 C22 73 : — (2353 : — C24 t3 C25i3 )
, Q2 Q2 Q . Q 5 Q3 , Q3 Q Q
G;/y:xzcwt_z"'cn — t 12 12 C42t_3—c43t_3—c44t_3—045i3—046i3;
Q zQ Q Q 4’Q 5 Q , Q Q
Gy =Ci—+cC ‘ —+c t+c 1+ct +ct +ct +c t+c 1

where the values of the constants ¢; through cgq are listed below in Sec. 11. Next, performing the dot
product niGi’j-:m one has, where the values of the constants d; through d-, are listed below in Sec. 12,

X 1 t? 1 4 3 t2 1
TlGlxx d16+d2Q +d3Q +d4Q +d5Q +d6Q +d7Q +d8Q3+d9@’
1 2 t 1 t* t3 t? t 1
NGy = d10Q+d11@+d12Q +d13Q +d14Q3+d15@+d16@+d17@+d18@:
1 2 1 4 t3 2 t 1
n;Giyx d19Q+d20Q +d21Q +dzzQ +d23Q +d24Q +d25Q +d26Q +d275'

11
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1 t? t 1 t* t3 t2 t 1
=dyg=t+dy5+tdyg5tds1 5 +tdsy5+dsz 5 +dss5+dss5+dse—3

Gora Q Q? Q? Q? Q3 Q3 Q3 Q3 Q3
1 2 4 3 2 1

NGy, =dz7 =+ dsg—S+dsgstda5tds 3t day 5 tdsz3+tduu—+tdss—3,
=d 1+d t2+d t+d 1+d 4+d 3+d 2+d t+d !

n;G el ey
ny 46Q 47Q 480 49Q SOQ 51Q SZQ 53 Q3 54-Q3

1 2 4 t3 t? 1

niG: =d +d +d +d +d +d +d +d +dez—=,
Lyx 55Q 56Q 57Q 58Q 59Q 60Q 6lQ 6ZQ 63 Q3
=d 1+d t2+d t+d 1+d 4+d 3+d 2+d t+d !

lyy 64-Q 65Q 66Q 67Q 68Q 69Q 7OQ 7IQ3 72 Q3 )

and then substitute eqns. (38) and (39) into eqns. (49) to obtain, again, where the constants d, through
dqoo are listed below in Sec. 12,

t 1 3 2 1
Jxx =d3mtdy—t+dis—S+tde5tdy—+dig—,
X, =d g+d g+d Q3+d 5:22+d Qt+d Ql
Ixy = 79Q 80Q 81Q2 823Q 832Q 84Q
t 1
y
9yx = Gxx = dgs 7+ dge 7+ dg7 — + dgg 7 + dgo —5 + dog =5 (52)
x det+deQthQtdetdQl
9y:y = Gxiy = Qo1 5 92 7 — Q75 76 77 78
Y =d t+dQ1+th3+th2+th+dQ1 :
9yx = Q93 94 95 77 96 97 98
Q Q Q Q? Q2 Q2
y t 1 t3 t2 t 1
gy:y:d996+d1006—d87@—dss@—d&w@—d%@-

At this point, the integrals (47) may be evaluated. Consequently, substitution of eqns. (51) into
the second of eqns. (47), and performing the integrations gives

1
) +(Lds — dg)l;3 + (Ldg — d;)I14 + (Ld; — dg)lys + (Ldg — dg)l16 + Ldoly7 ] ,
Aoor:0 = I [dil3 + dylg + d3l; + dylg + dsly; + dglyz + dyliy + dglys + dolyg |,
1
L

[ —dyol5 + Ldyoly — dyqlg + (Ldyq — d12)I; + (Ldyp — dy3)lg + Ldq3ly — dygly,
+(Ldyg — dys)li3 + (Ldys — dig)lia + (Ldyg — di7)Iys + (Ldy7 — dyg)lie + Ldigli7 |,

1
Apo11 = =1 [diols + di1le + dial; + dizlg + diglip +dislis +diglis + dyglis + dighs ],

1
Ao10:0 = =1 [ —diol3 + Ldyoly — dyols + (Ldyg — dpy)1; + (Ldyy — dap)lg + Ldgylg — dasly;

) +(Ldy3 — daa)li3 + (Ldps — dys)lig + (Ldys — dyg) s + (Ldye — da7) 16 + Ldpyli7 ],
Ap11:0 = I [ diolz + dyolg + dpyl; + daplg + dpzlip + daglys + daslis + dpglis + da7lie |,

1
Ap101 = I [ —dagl3 + Ldygly — dpole + (Ldpg — d3o)l; + (Ld3g — d3q)Ig + Ld3q Iy — d3z14;

) +(Ld3; —d33)li3 + (Ldsz — d3g)lig + (Ldsy — d3s)lis + (Ldzs — d3e)lie + Ldsely7 |,
Ap11:1 = 7 [ dagls + daolg + d3gl; + d31lg + d3plin + dsslys + d3alis + dzshis + dsglie | (53)

12
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1
A100:0 = I [ —d37I5 + Ld3;1, — d3gle + (Ld3g — d39)I; + (Ld3g — dag)lg + Ldaoly — daqls

) +(Ldyy — dyp)lhz3 + (Lday — dy3)lygs + (Ldyz — dyg)lys + (Ldgg — dys)lie + Ldysly; |,
Ai01:0 = I [ d37l3 + d3gle + dzol; + dyols + daglip + dazlys + dyslis + dyglis + dashe ]

1
Ai001 = I [ —daels + Ldagly — dazle + (Ldgy; — dag)l; + (Ldag — dyo)lg + Ldygly — dsoly

) +(Ldso — ds1)I13 + (Ldsy — dsp)lig + (Ldsy — ds3)lis + (Ldsz — dsa)lie + Ldsaly7 ],
Ai011 = I [ dagls + dazle + dagl; + daolg + dsolip + dsilyz + dsalis + dszlis + dsalie ]

1
Ai10:0 = I [ —dssl3 + Ldssly, — dsglg + (Ldsg — ds;)1; + (Ldsy; — dsg)lg + Ldsgly — dsoly,

) +(Ldsg — dgo)l13 + (Ldgg — dg1)I1a + (Ldgy — dex) 15 + (Ldey — dg3)l16 + Ldgzli7 ],
Ai11:0 = i [dssls + dsele + ds;I; + dsglg + dsoliz + dgolyz + derlia + dexlis + dgslie |

1
Aj101 = I [ —deals + Ldgaly — desle + (Ldgs — dge)I; + (Ldgg — dg7)Ig + Ldg71g — degly

) +(Ldgg — dgo)l13 + (Ldgg — d70) 114 + (Ld7g — d71)I1s + (Ldyy — dy2) 16 + Ld 72117 ],

A1111 = 7 [ deals + dgsle + degly + dezlg + deglyz + deoliz + dyolis + d711ys + dyali6 ] s

where, as in Sec. 6, the indefinite integrals I;(t) are listed below in Sec. 13, e.g., for I3 above,
I3 = I3(L) — I5(0). Also, for the first, second and fourth indices of Ay j;.;m, the notation 0 = x and 1 =y

has been used. Similarly, substitution of eqns. (52) into the third of eqns. (47), and performing the
integrations yields

1

Booo:0 = I [ —d73l; + (Ldy3 — d74)l5 + Ldyaly — d7sls + (Ld7s — d76)lg
. +(Ld7e — d77)1; + (Ld77 — d7g)lg + Ldzgly |,

Boo1:0 = I [d73]; +dyals + dysls + dyglg + dypl; + doglg |,
1

Booo:1 = I [ —dyoly + (Ldyg — dgo)l5 + Ldgoly — dgqIs + (Ldgy — dg)ls

+(Ldgy — dg3)I; + (Ldgz — dga)lg + Ldgals | ,
Boo1:1 = I [ dyoly + dgols + dgils + dgple + dgzl; + dgalg ] ,

1

Bo10:0 = B1oo:o = I [ —dgsl; + (Ldgs — dge)l5 + Ldgely — dgrl5 + (Ldg; — dgg)lg
) +(Ldgg — dgo)l; + (Ldgg — dgg)lg + Ldgoly |,

Bo11:.0 = Bio1:o = I [ dgsly + dgels + dgyls + dggle + dgol; + doglg | , (54)
1

Bo10:1 = B1oo:1 = 7 [ —do1lp + (Ldgy — dop) I3 + Ldoyly + dysls — (Ldys — dy6)ls

—(Ld76 — d77)I; — (Ld77 — d7g)Ig — Ldzglg |,
Bo11:1 = Bio11 = z [d9112 + d9213 - d7515 - d7616 - d7717 - d7818] ’
1
Bi10:0 = I [ —do3ly + (Ldgs — doy)I3 + Ldgyly — dosls + (Ldgs — dog)lg
+(Ldgg — do7)I; + (Ldgy; — dog)lg + Ldogly | ,

Bi11:0 = 7 [ dosly + doylz + dosls + dogle + dgyl; + doglg |,

o~ =

13
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1
Bi10:1 = i [ —doolz + (Ldgg — d100)13 + Ld1ools + dg7ls — (Ldg7 — dgg)ls
" —(Ldgg — dgo)l; — (Ldgg — dgo)lg — Ldgoly ] ,
Bi111 = I [ dooly + d1golz — dgyls — dggls — dgol; — doolg ] ,
where the notation used for the indices of By ., is the same as that used in eqns. (53), and again, the
indefinite forms of the definite integrals I; are listed below in Sec. 13. In any case, knowing the
displacement gradients from eqn. (47), the strain components are known via &;; = 1/2 (ui_ i+ uj_l-).

8.2. Strain Components on t

While the boundary element of Sec. 6 is

' | n straight, it does make sense to consider the
\/_a curvature of the boundary when calculating the
t strains, and thus the stresses, on the boundary. At
left, in Fig. 6, is shown a curved section of the
/ boundary. The outward pointing unit normal
o vector is given by
c n=cosae,+sinae,, (55)

Figure 6. A curved portion of the boundary t.

where « is the orientation of a differential of length on the boundary, and the point C is the center of
curvature. The curvature k is the tangential derivative of «, i.e.,

K=ag. (56)

Note that k may be positive or negative. Notwithstanding, in the curvilinear nt—system of the boundary,

the strain components are
1
Enn = Unn €t = Upt + KUy, Ent = 2 (un,t + Uy — Kut) . (57)

One notices the similarity of eqns. (57) to the strain components in polar coordinates, which are,

1 1 1/1 1
Err = Ury €go = —Ugp + —Ur, &g = E(;ur,e +Ugr ——Ug ) : (58)

In other words, a is like 6, and
(59)

To calculate k at the nodes on the boundary, the
situation depicted in Fig. 7 at left is employed. The
boundary is taken as being smooth at the point 1. The unit
tangent and normal vectors t and n at point 1 are
calculated as

. t0 +t? n® +n' 0
=— n=———————.
[0+t | |n®+nt | (60)
Figure 7. Two boundary elements with
the point 1 being on a smooth In any case, having the element values a! (I = 0,1)
portion of the boundary. pictured below in Fig. 8, which are calculated via

14
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nl
a’ =tan™? <—¥> , (61)
nx
the derivative (56) at point 1 is calculated via finite difference, viz.,
al — a®
Kkl = - (62)
5 Lo + L1)

If point 0 is on a corner, then k° = k!, and if point 2 is on a corner, then k? = k1.

0 1 L
o L 41 L 2 0 1
L g L 0 1
uuI o0 U1i o Uz, u- us

Figure 8. Element quantities corresponding to the ~ Figure 9. A single boundary element.
two boundary elements in Fig. 7.

Now, the transformation matrix 1;; at the boundary nodes is

Ny Ny

Yij = [ te t, ] )
where the components of n and t are calculated with eqns. (60), or with n® and t° if point 0 is on a
corner, or with n® and t* if point 2 is on a corner. In the second of eqns. (63), v'* are the components of a
vector v in the nt—system, and v;(y are the components of that vector in the xy—system.

vt = 1l’ij17;(y' (63)

The procedure for calculating the strains is, first, transform the nodal vectors u! and T/ from the
boundary solution to the nt—system via eqns. (63). Next, the tangential derivatives for each element,
pictured in Fig. 9, are calculated, again, with finite difference

1 0
U; —U;

L )
where e is the element number, and then the tangential derivatives at point 1 in Fig. 8 are calculated by
averaging the abutting element values

e __
Uiy =

(i=nt), (64)

1
1 _ 0 1
Uie = E(uie,t +uir). (65)
If point 0 in Fig. 8 is on a corner, then u?t = uie'?, and if point 2 in Fig. 8 is on a corner, then uiz_t = f%

At this point, u, ; and u;; are known at all the boundary nodes. To find u,, ,, and u; ,, look at

Hooke’s Law
1 1
Onn = m [(A—v)enn + Ve ], Ont = Egnt ) (66)

cf., eqns. (4). Putting T,, = 0,,,, and T; = 0g,,; into eqns. (66), and substituting eqns. (57) into eqns. (66),
some minor algebra yields

1
Unn =T [S(l = 2vI)T, — ViU — VKU, ] , Uy = 28Ty —up + kuy, (67)

so that now uy, ,, Uy ¢, Ur, and u, ;. are known at all the boundary nodes. Equations (57) then give the

15
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strain components in the nt—system, which are transformed back to the xy—system via

Ekl 81] wlkl/)]l (68)
9. Values of the Constants a;

The values of the constants a; appearing in eqns. (40) are

(3-2vY) (3—2v") 1
aq=——>— Ay =—————1 a3 = ————— t, t2
1 4(1—v*) X’ 2 4n(1—vr) % 3T 2m(1—vr) XY
1
Ay = m ty(thrOy + tyT'Ox) , ag = —27_[(1 Y (txroy + Zterx)roy ,
B ) _ 1 _ 1
a6_—2n(1—v*) ToxT0y » a7——%t ag = — 5 Toy »
1
_ 2 _ 2
%= " —v) ty(ti—t7),  an= T A=) [ tx(taroy + 2ty70x) = 36570y |
1
aq = —m [ (thrOy + terx)rOX - 3tyr02y] ) A1z = _m (r02x - rOZY)rOY ’
i (1-2v" i (1-2vY . - (1-2v") .
B 4@ —vo) M7 an(1 —vr) X B an(1—ve) Y
(1-2v") 1 1
e Y T T T e gy T 2
1
ago = _m (thrOy + terx)rOX , ayg = —m T'Ozxroy ) az1 = —% tx )
Q2 = o Tox » Q3 = T (tz ) ’

1
G20 = = ey Lty (tatoy + ty700) = 3tiro |

1
%5 = = i —v9) [ (txToy + 2tyTox)roy = 3tatdx |, 26 = Tamd =) (rdy — 18 )T0x
o B=2v) . B=2v)
27 Ar(1—v*) ¥’ (28 = 4m(1 —v*) Toy -

10. Values of the Constants b;

The values of the constants b; appearing in eqns. (41) through (44) are listed below. Note that the
values of the constants a; are listed directly above in Sec. 9.

by = nya; + nya; , b, =nya, + nyag , b; =nyaz; + nyaq ,
b4 =N,Qy + nyalo ) b5 =n,das + nya11 ) b6 = N,Qaq + nyalz )
b; =nya; + nya,3 , bg = nyag +nyaq, , by = nyag —nyas ,
big = nya10 —nyay ,  big =nea;; —nyas ,  byp =nyagp —nyae
biz3 = nyays + nyaz; , big =Nya16 +Nyaz; ,  bys = Nyay; +nyazs
b1 = nyxay1g + NyAzs ,  b17 = NyeQi9 + NyAzs ,  big = Nyaye +Nyaye
big = NyQzy + Nyay7 ,  byg = NyQyp +Nydyg ,  byy = Nyaz3 —Nyay7 ,
byy = nyaz, — nyaig , by3 = nyazs — NyQig , byy = nyaze — nyaso ,
(3 —4v")S 5
25 = T o1 o by =—7—= ty by = —5————= tyToy »
8m(1—v*) 4(1 —v*) 2m(1 —v*)
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S S
_ 2 _ _
28 = " =) Toy bye = an(1—v") ely » by = an(1—v") (tery + terX) )
S
by = ——— ,  byy=————1t2, by3=———t ,
31 47_[(1 — V*) rOxTOy 32 47_[(1 — V*) x 33 27.[(1 _ V*) xTox

byy=——— 12, .
34 47_[(1 _ ,V*) TOx

11. Values of the Constants c;

The values of the constants c; appearing in eqns. (50) are listed below.
(3-=2v")

T A1 — o ! =—— | @-2v)tZ+t2],
@ 4n(1 —v*) €2 27-[(1 v*) [ ( vty +ty ]
1
— — *) a2 2
C3 = — (1 — v)[( —-2v" )th0x+tyT0y], C4——m[(3—2v )r0x+r0y],
_ 2 5 4
Cs = (1 —v") txty , Ce = —T[(l Y txty(txroy + terx) ,
4
€7 = (1 —v") (t,%rozy + Aty tyToxToy + t575x) Cg = T —v") (txToy + tyTox )ToxToy »
2 (5-2v") (5-2v")
_ 2.2 — —
Cg = 7T(1 _ V*) T'Oery )] Cio = — 27_[(1 _ V*) txty ) C11 = — 27_[(1 — V*) (txroy + terx) )
(5-2v") 2 5 ,
C1p = T vy ToxToy »  C13 = g txty .  Cla = s t2(3tyToy + tyTox) »
€15 = (1 —v¥) t}’(tery + terx)rOy ’ C16 = m (tery + 3tyT0x)T02y s
2 (1-2vY) (1-2v")
— 3 — —
C17 = 7T(1 — V*) T'Oxroy ) Cig = — 27_[(1 — V*) tx y Ci9g = — 27‘[(1 — v*) (tery + tyrox) ,
(1-2v") y g
C20 = _m ToxToy » €21 = —m txty(tx — ty) ,

1
=i [ ¢2(teroy + 3t,70x) — 2(3txToy + tyTox) |

e g (txoy + tyTox) (ExTox — tyToy)
Coy = v [ (3txtoy + tyTox )1E — (txToy + 38570 )78y |
o5 = =iy (e =T ety 26 =
1
¢y = g [(7—av)ez —e2], Crg = “ AT [ (7 —4v)tyroy — tetox |
Cpo = pyrcp— [(7—4v)rd, — & ], C30 = D) ty(tZ —t3)
1=~ T T ty[ tx(txroy + tyrox) — 2t210, |
2= [ (62 — 6t2)1d, + 4tytyroxyroy + 213 |
cra = s [ty + 7026578 Ty e = s ()1
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C35:—%: C36:m[(1_2V*)t£+t§]’

1 1
C37 = g [ (1 —2v)teror + tyToy |, 3= A —v) [ —2v)rg +78, ],
C39 = % txty ,  Ca0 = % (taroy +tyTox) »  Caa = % ToxToy »
G2 =~ oy Bl G = Ty G(teToy +3670x)
Cag = D) tx(thOy + tyTOx)TOx ) C45 = T —v) (3txr0y + terx)rOZx ’
€6 = T Ty ToxToy »  Ca7 = - [A-2v)eg+2],
Cag = g [ (1 —2v)tyroy + tetox | Ca9 = ﬁ [ —2v)r, + 78 ],
0=~y [T -8 -8 =g s [0t~y |
= g LT ==y ey = s (G - 1),
esa = =y bl by (Beroy + tyrox) = 2ekron |
€55 = " T Ty [ ¢218, + At tyronroy + (62 — 6t2)18 |,
Csg = “rd—v) [ (txroy + tyTox)Toy — 2tx7Gy [7ox C57 = —ﬁ (réy — 16 )76
€58 = = Zr T v [B-2v)t2+¢2], 5= ~ 2 =) [ B =2v)tyroy + tetox |

€0 = ~ 3T =7 [B—2v)rg +7é& ] .

12. Values of the Constants d;

The values of the constants d; appearing in eqns. (51) through (54) are listed below. Note that the
values of the constants c; are listed directly above in Sec. 11.

dy =nycq , dy = NyCy + Ny Crg d3 = nyc3 + Ny Cq ,

dy = NyCy +nyCy0 ds = NyCs + Ny Ca1 de = NyCe + Ny Ca
d7; = NyCy +nyCo3 , dg = NyCg + Ny Co4 dg = NyCq + NyCy5
dig =Ny Cz6 » di1 = NyxC1o + Ny Co7 diz = NykC11 +NyCag
di3 = NyxCiz + Ny Ch9 d14 = NyC13 + Ny C30 dis = NyC14 + NyC3q
die = NxCi5 +NyC3y , dy7 = NxCi6 + NyC33 , dig = NyC17 + NyC34 ,
dig =Ny C35 d3o = NyxC1g + Ny C36 dy1 = NyxC19 + NyC37
dyp =NyCyo + NyCsg , dyz = NyCyy — NnyCs , dg = NyCyp — NnyCe
dys = NyCy3 — nycz , dye = NyCos — nyCg , dy7 = NyCo5 — nyCy ,
dyg = NyCye » dz9 = NyCa7 + Ny C39 d30 = NyxCag + My Cyg »
d3; = NyCyg + NyCaq1 d3; = NyC3p — NnyC13 , d33 = NyC3q — NyCig
d3s = NyC3y — nyCis , d3s = NyC33 — NyCi6 » d36 = NyC34 — nyCi7 ,
d3; =Ny Cz d3g = NyC39 + Ny Csp d39 = NyCyo + Ny Cs1
dyo = NyCyq +NyCsy dy1 = NyChp +MyCs3 dyz = NyCy3 +NyCsy
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dyz = NyCyy + NyCss daq = NyCys + Ny Cs6 dys = NyChp + NyCs7 ,
dye = NyC35 , dy7 = NyCa7 + NyCrg d4g = NyCsg +MyC1o
dag9 = NyChg + Ny Cy0 dsg = —NxCs —NyCy1 ,  dsg = —NyCe — Ny Caz
dsy; = —NyC7 — NyCa3 ds3 = —NyCg — NyCas dsq = —NyCo — nyCzs
dss = NyCy dse = NyCs0 + Ny Cy0 ds7 = NyCs1 +NyCqy
dsg = NyCsy + NyCi2 dsg = NyCs3 — NyCsz deo = NyxCsq — NyCs3
de1 = NyCs5 — NyCayq dez = NyCs6 — NyCss dez = NyCs7 — NyCa6 »
des =nycq des = NyCig + NyCsg , dee = NxC19 + NyCs ,
de7 = NyCyo + NyCep deg = —NxCy1 +NyCs ,  dgg = —NyCap + Ny Co
d79 = —nyCy3 + nycy d71 = —NyCyy + Nycg ,  d7p = —NyCy5 + NyCo
(3 — 4v")S (3 — 4v")S S ,
d73 =————= tx, d74 = ———= Tox » d7s = —5———= tsty
4(1 —v*) 4(1l —v*) 2m(1— v*)
d76 = —m ty(throy + terx) , d77 = —m (tery + Zterx)rOy ,
S 5 (5 —4v")S (5—-4v")S
d7g = — 57—~ ToxT0y d7o="—F—"~ty, 80 = 711 . Toy
2n(1 — v¥) 4 (1 —v*) 4(1l —v*)
=13 d . R t2r, dgs = —=——— t,1¢
81 2n(l—v*) ¥’ 82 2m(1—v*) Y'Y 83 2m(1—v*) Y
S
3
=15, dgs = ——— t, , dgg = ————— Tyy ,
84 2m(1—v*) % 85 4r(1—v*) 7 86 4(1—v*) Y
dgy = ———— t2t , dgg = ————— t, (t, Ty + 2t 7 ,
87 271_(1 —V*) xty 88 27_[(1 _ V*) x( x'0y y Ox)
dgo = =————— (2ty70y + tyTox )1, dog = =————— 18T, doy=——— ¢
89 27_[(1 _ V*) x'0y y!'ox)"0x » 90 27_[(1 —V*) ox'0y » 91 47_[(1 —V*) X
p S p (5—4v")S (5—4v")S
= ——17 ) = — , = 17 ,
2 4m(1—vr) ™ B T a1 -v) ¥ * T a1 —v) ™
d t3 d 55 t2 d 35 t, 1
e e ——— , e e ———— 7 , e ——— 17 ,
p 3 p (3—4v")S (3 —4v")S
=——_— 3 =—"t., =7y .
o8 2m(1 —v*) % P T a1 —vr) Y 1007 41 —v) 'Y

13. List of Indefinite Integrals

The definite integrals I; through I;, appearing above in eqns. (43), (44), (53) and (54) may be
evaluated with the indefinite integrals listed in this section. The quantities Q, 8 and r§ occurring in the
expressions below were defined above in eqns. (39). Additionally,

y = ’roz—ﬁz, 6=tan‘1[$].

13.1. Non-Degenerate Case (y # 0)

Since Q has two complex conjugate roots, i.e., Q = [t — (=B + iy) |[t — (—B — iy) ], partial
fractions (with complex variables) may be used to calculate the integrals I,(t), Io(t), I;1(t) and I, (t).
Integration by parts may then be used to calculate the remaining integrals.

t3de

L) =|——=—-=@¢—-4%)InQ — 2 6—B(r2—2ﬁ2)§+1t2—2ﬁt
1 0 o o 14 0 v 2
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t2dt 5 ;0
Iz(t)=f7=—ﬁln0+(ro - 2=+

tdt 1 f)
Ig(t)=f7=—an+ﬁ;

2
ne =[-8
N S gt
ttdt 1 t5+ pt 5
Is(®) = | —5 == | —4By*InQ + + (3r§ — 8BH)ys —rgB*— —t3 + Bt?
5(t) 02 2y _ By Q 0 (375 )y 0B ” B
+(31¢ — 452)t |
t3dt 1 | t* + pt3 5
()= ——==—|[y*InQ + +2ByS +1éB——t%2 + Bt
6() Qz yz _V Q Q :By Oﬁy ﬁ
t?3dt 1 [t3+ pt? 5
I;(t) = R —roz——t]
tdt 1 [t?2+pt 8]
I(t) = | —=—— + 58—
O=]z=57|7q
dt 1 [t+8 6
lo(®) = | = = =— ___]
D= 217 7

1 1
Lio(t) =ftandt =§(t2 +1¢ - 2%)InQ +23y8—§t2 + Bt

Ill(t)=fandt=(t+ﬁ)an—2y8—2t

t5dt 1 2y2(t® + pt5)  —3t6 —9pt> — (¢ + 58°%)t*
I,(t) = = =5 4y41nQ + 7 3 0
+B(17r¢ — 14B%)ys — BQry — 111EB% + 6,6’4)§
+ 3t + 3663 — (41F — F2E% + B(7r¢ — 4B2)t |
ttde 1 [2y%2(t° + BtY)  —2t> —7Bt* — (1 + 4B2)t3
I13(8) = 0 8t _ 0? 0 g — 4y38
+(ry — 81¢B% + 4/34)% + 2t3 + 3Bt? — 3r02t]
t3dt 1 [2y2(t*+pt3)  —t* —5pt3 — (1§ + 3B%)t?
L14(8) = el = 87 _ 02 + 0 2 —2By6
+B(51¢ — 2[32); +t2 + 3[%]
t2dt 1 [2y2(t3+pt?) —-3Bt%2— (¢ + 2Bt 5
Lis(6) = 0 8t - ZQZ 2 go —(r02+2ﬁ2);]
tdt 1 [2y%2(t?2+pt) 2t2+pt—p 5
Lig(t) = 07 8yt 2 e 0 +3ﬁ;]
dt 1 [2y2(t+pB) 3(t+pB) 6
0= =g | ]
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13.2. Degenerate

Figure 10. Case

y =0.

ment Method for Two-Dimensional Linear Elasticity

Case (y = 0)

Xy

---®  the boundary element, as pictured at left in Fig. 10, theny = 0, or ¢ = B2,
1 and Q = (t + £)?. In this case one may use

where é 1

lim—=——
yl—I;%y t+p

in the expressions for I; (t) through I,(t). For the integrals I5(t) through Io(t) and I, (t)

through 1,,(t), th
the variable subst

3

e following expressions must be used, which expressions are obtained easily by using

itutionw =t + (3.

) = t*de 8] 63> 23 p*
0= [ Gz =+ D=4l fl - b = g
1 3B 32 5
MBI G T2 B T 3a B
1 8 5

DN ETE
1 ;

=TT p2 T3+
1

3(t + B)3 5
58 562 1083 584 B
R ) B ) EAE Ty R Ty ) LA YO,
1 Zﬂ 232 BS ﬁ4

TSGR CrBE R Gt pF 5+ B

1 B 3p° p°

T T2@ B (C+BE A +p) 5+ )

1 p B’

t°dt
Is(t) = IF =
t2dt
I7(t) = QZ =
tdt
Ig(t) = 0z
de
Iy(t) = 02 =-
todt
I,(0) = f? =
ttdt
Ii3(t) = 03 =
t3dt
I14,(0) = 03 =
t2dt
IlS(t) = Q3 =
tdt
Li(t) = F =
dt
Ii;(t) = E =

= T30+ B)e 20+ B 5+ B
1 B

=TI+ B T 5E+ By

1
" 5(t+ B)S

14. Analytical Example in Cartesian Coordinates

Consider

O-xeF(L_x)y:

which spans the r

the stress field
12V

R1% ) )
O'yy 0, O-xy:ﬁ@l-y —H),

ectangular domain (a cantilever beam) of Fig. 11 below. Note that

H/2 H/2
f Oxy(L,y)dy = -V, f Y0.x(0,y)dy = VL,
—H/2 —-H/2
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so that IV > 0 is the net shear force applied to the ends of the beam, and a moment VL is applied to the left
end of the beam. Also, eqns. (69) satisfy equilibrium g;;; = 0 identically. With eqns. (69) and Hooke’s

Law (1), the strain components

y g;=1/2 (ul-,j + uj,l-) are
_ 12VS(1 —v*)
y -’L— Exx—T(L_x)y)
2 12VSsv*
VL C -I— - &y =~ "3 L-xy, 7D
= ’ 3VS 42 2
L Exy = 2H? (4y* — H?).
: L : Finally, integrating the strains (71)
such that u,(0,0) = u,(0,0) =0
Figure 11. Domain of a cantilever beam. and u, (0, H/2) = 0, one obtains the

displacement field

S
Ux = 573 [12(1 —v)(2Lx — x®)y + 42 —v*)y3 — (2 —v")H?y],
S
Uy = =53 [12v*(L —x)y? +4(1 —v)(BLx? — x3) + (4 + v)H?*x]. (72)
Consistent boundary conditions are then
12VL
onx =0, onx =1L,
— 3 2 3V H2
H Tx =0
andony = 7 (73)
T,=0
along with the conditions u,(0,0) = u,,(0,0) = 0 and u,(0,H/2) = 0.
15. Analytical Example in Polar Coordinates
l y In polar coordinates, the quarter-annular

domain shown at left in Fig. 12 is subjected to the
boundary conditions

u,-(a,0) =ug(a,6) =0,

2F
T.(b,0) = TCOS 40 , Ty(b,0) =0
TN\

T.(r,0) =0, ug(r,0) =0, (74)
\ X T.(r,m/2) =0, ug(r,m/2) =0,
Figure 12. Quarter-annular domain. where
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/8
F= f T.(b,0) bd@ . (75)

0

The boundary conditions (74) may be satisfied with a displacement field of the form
= f(r)cos 46 , ug = g(r)sin46 . (76)
Substituting eqns. (76) into the strain-displacement relations (58), one obtains the strains

1 1 1 4
= f'cos 40, 599=;(f+4g)cos49, £T9=§(g’—;g—;f>sin49, (77)

and via Hooke’s Law (4), eqns. (77) give the stresses
4v*
Oy = W[(l_V)f-l_ f+—g]COS49

1-— 4(1 —
Ogp = 5(1—[ f+( V)f+(rV)g]

r

cos 46 , (78)

1 1 _
Org = >3 (g ——g——f)sm49.

Note that eqns. (76) and (78) satisfy the boundary conditions at & = 0 and 6 = m/2 identically.
Notwithstanding, in polar coordinates, the equilibrium equations are
1 1 2
Orrr+ 099+ (00 —0g9) =0, Orgr +—0ggp +—-0rg =0. (79)

Now, substitution of the stresses (78) into the equilibrium eqns. (79) yields the coupled pair of ordinary
differential equations

(1—v*)f”+(1 Tv )f,_(9 r127v )f+§ ,_2(3r24v )g=0,
-2y + U2y B3 B KOS, (80)
r r r r
By assuming functions of the form
f=kr?P, g=1ur, (81)
eqns. (80) become
[(1—v)p2—(9—17v")] 2[p— (B —4v")] ] [ 82)
—4[p+ (B —-4v")] [(1—-2v)p— (33 —34v") ]
which has nontrivial solutions if the determinant of coefficients is zero, viz.,
p*—34p? +225=0. (83)
Thus,
p=-5,-3,3,5. (84)

Next, using the four null vectors of eqns. (82) as generated by the powers (84), one obtains the relations
between the eight constants k; and [;
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=-5 L=k =-3 L, =
p = 4 1, p = 3oy 20
22 —-v")
p=3 = l3=—k;, p=5:>l4——1+zv* 4 (85)
Finally, the functions f and g are then
ki ks L L
f:T—5+r—3+k3r3+k47‘5. g=r—5+r—3+137”3+l47”5- (86)

Turning attention to the boundary conditions at r = a and r = b, eqns. (76), (78), (85) and (86)
give the system

1/a® 1/a3 a3 a® k,

0
1/a® 2v*/[(3-2v)a®] —a® -22—-v)a®/A+2v) ||k, | | o 87)
—5/b5 —9/[(3—2v")b3] 3b3 5b5/(1+2v*) || ks | | 2FS
—5/b5 —6/[(3—2v)b3] —3b3 —10b5/(1 + 2v*) 1L ks 0

to solve for the constants k;. The first of eqns. (87) is from u,.(a, @) = 0; the second is from
ug(a, 8) = 0; the third, from T;.(b, 8) = 2F cos46/b ; and the fourth, Tg(b, 8) = 0. Instead of solving
eqns. (87) algebraically, they were solved numerically using the constants

E=3x10"psi, v=03, a=36in, b=72in, F=10,0001b (88)
for plane stress. The results are

k, = 4.468854986 1019630 x 103 l; = 4468854986 1019630 x 103

k, = —6.240 733 337 857 3010 x 10° l, = —1.134 678 788 701 3274 x 10°

, (89
ks = 1.437 736140089 1819 x 10~° l; = —1.437 736 140 089 1819 x 10~° (89)
ks = —1.194 905 134 758 0960 x 10713 l, = 2.892928220993 2855 x 10713

which constants solve the problem at hand.

16. Numerical Example — Cartesian Coordinates

................................... Here the problem solved earlier in
................................... Sec. 14 is solved numerically. The grid

...................................

................................... used for the calculations is shown at left

...................................

................................... in Fig. 13. The black and blue points in
................................... the figure consist of a 33 by 17 array of
................................... 561 points. The black points are on the
L LLLLLLlLLlLLULllUlLlLUlL..0000 Dboundary of the domain while the blue
................................... points are in the interior. Between the
................................... black pOintS are the 96 boundary

...................................

................................... elements. Note that on the corners the

................................. nodes are double nodes, with one of them

Figure 13. Computational grid used for the analysis as belonging to one face, and the other to
described in the text. the adjacent face. At these double nodes,

...................................

...................................

the continuity of the displacements is not enforced explicitly during the boundary solution, but they come
out to be continuous for all practical purposes. After the boundary solution though, the displacements at
the corner double nodes are averaged. In any case, including the double nodes at the corners, there are
100 boundary nodes. The 100 red points in the figure are where the singularities are placed to generate the
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two required equations for each boundary node. Finally, the constants used in the analysis are
L=10in, H =5in, V =10,0001b, E =3 x 107 psi, v=03, 90)

and plane stress is assumed.
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Figure 14. Analytical and numerical results for the Figure 15. Analytical and numerical results for the
displacement u, along y = —2.5 in. displacement u,, along y = —2.5in.

Figures 14 and 15 above show the exact (solid curves) and numerically calculated (plotted points)
displacement components along the bottom face (y = —2.5 in) of the domain. The numerically calculated
values are quite accurate, but they do under-estimate the exact values somewhat. This is due to the
parabolic force distribution along the right boundary of the grid being represented by sixteen line
segments, which slightly under-estimates the total applied shear force.

8 S
s A s
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1= o)
)
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0
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o
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o
o d
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Figure 16. Analytical and numerical results for the Figure 17. Analytical and numerical results for the
displacement u,, along x = 10 in. displacement u,, along x = 10 in.
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Figures 16 and 17 above show the results for the displacement components along the right edge x = 10 in
of the domain. Once again, the numerically calculated values are quite accurate, although slightly under-
estimated. Figure 18 below shows the results for the displacements along the top face y = 2.5 in of the
domain. As is evident, the numerically calculated values are highly accurate. Figure 19 below shows the
displacement components along the left face of the grid at x = 0 in. This is the least accurate part of the
solution, especially for the component u,. Also, note the slight oscillation exhibited by u,, near y = 0 in.
Perhaps the behavior of the numerical results on the left face is due to the discrete displacement
conditions u,(0,0) = u,(0,0) = 0 and u,(0,H/2) = 0.
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Figure 18. Analytical and numerical results for the Figure 19. Analytical and numerical results for the

displacements u, (red) and u,, (blue) displacements u, (red) and u,, (blue)
along y = 2.5 in. along x = 0 in.
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Figure 20. Analytical and numerical results for the Figure 21. Analytical and numerical results for the
displacements u,, (red) and u,, (blue) stresses gy (red) and gy, (blue) along
alongy = 1.25in. y = 1.25in.
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Figures 20 and 21 above show the results for the displacement and stress components along the
horizontal line y = 1.25 in in the domain. Except for the slight blips in 0,,,, near the left and right
boundaries, all the calculated results are highly accurate. Finally, Figs. 22 and 23 below show the results
for the displacement and stress components along the vertical line x = 7.5 in in the domain. Again, note
the slight under-estimation of the displacement w,,. The numerically calculated stresses, on the other hand,
are highly accurate.
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Figure 22. Analytical and numerical results for the Figure 23. Analytical and numerical results for the
displacements u, (red) and u,, (blue) stresses 0y (red) and gy, (blue) along
along x = 7.5in. x =75in.

17. Numerical Example — Polar Coordinates

Here the problem solved analytically in Sec. 15 is solved numerically. The grid used in the
analysis is shown below in Fig. 24. The black and blue points in the figure consist of a 25 (radial) by 37
(tangential) array of 925 points. The black points are on the boundary, and between the black points are
the 120 boundary elements. As was the case before, the black points on the corners are double nodes.
During the boundary solution the continuity of the displacements at the corner double nodes is not
explicitly enforced, but for all practical purposes, the corner displacements come out to be continuous.
Nevertheless, after the boundary solution, these corner displacements are averaged. Including the double
corner nodes, there are 124 boundary nodes, and the 124 red points in the figure are where the
singularities are placed to generate the two equations needed for each boundary node. Finally, the
constants used in the analysis are given above by eqns. (89).

Figures 25 and 26 below show the exact (solid curves) and numerically calculated (plotted points)
of the boundary solution along 6 = 0. As Fig. 25 shows, the numerically calculated values of the
displacement u, are highly accurate. Figure 26 shows the results for the traction component T),. While the

magnitudes of Ty, are not all that inaccurate, the numerical results possess slight oscillations on

r € (36,64) in. While this is the most inaccurate part of the solution, the author is not entirely sure of
why the oscillations occur.
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Figure 27 below shows
the results for the displacement
components along the outer
radius of the domain. As is
evident, these numerically
calculated values are highly
accurate.

Figures 28 and 29 below
show the results for u,, and T,
along the boundary at
0 = /2. Owing to the
symmetry of the problem,
these graphs look exactly like
those in Figs. 25 and 26.

The final boundary
results are given by Fig. 30
below, which shows the
traction components Ty and T,
along the inner radius of the
domain. One sees that the
numerically calculated values
e of these traction components
are highly accurate.

R

Figure 24. Computational grid used in the analysis as described in the

text.
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Figure 25. Analytical and numerical results for the Figure 26. Analytical and numerical results for the
displacement u, along 8 = 0. traction T), along 6 = 0.
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Figure 27. Analytical and numerical results for the Figure 28. Analytical and numerical results for the
displacements u, (red) and u,, (blue) displacement u,, along 6 = m/2.
alongr = 72 in.
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Figure 29. Analytical and numerical results for the Figure 30. Analytical and numerical results for the
traction T, along 6 = 1 /2. tractions Ty (red) and Ty, (blue) along
r = 36in.

Results of the analysis in the interior of the domain are presented below in Figs. 31 through 34.
The displacement components along the radial line & = /8 through the domain are shown in Fig. 31,
which displacements are highly accurate. The numerically calculated values of the stress components g,
and o,,, along 8 = /8 (Fig. 32) are also highly accurate, except for the value of 0,,,, at the outer radius
(which should be zero). This probably occurs due to the finite difference procedure used to calculate the
stress components on the boundary, cf., Sec. 8.2. Also, results for gy,, are not shown in Fig. 32. This is
because, at 0 = 1/8, g,y = 0y,
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Figure 31. Analytical and numerical results for the Figure 32. Analytical and numerical results for the
displacements u, (red) and u,, (blue) stresses gy (red) and gy, (blue) along
along 6 = /8. 6 =m/8.

Finally, results along the radius v = 53.9391 in in the interior of the domain are shown below in Figs. 33
and 34. As is seen, the numerically calculated displacement components (Fig. 33) are highly accurate, as
are the numerically calculated stress components (Fig. 34).
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Figure 33. Analytical and numerical results for the Figure 34. Analytical and numerical results for the
displacements u,, (red) and u,, (blue) stresses Oy (red), gy, (blue) and
along r = 53.9391 in. Oxy (purple) along r = 53.9391 in.

18. Closing Remarks
The boundary element method presented above is both highly reliable and highly accurate (except

for some minor oscillations that sometimes occur in the calculated boundary tractions). Something that
the author finds curious, though, is that the method works well, even with the displacements and tractions
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being interpolated in the same way, i.e., both linear in each element. This is counterintuitive, given that
the tractions are related to the displacement gradients, so that interpolating the displacements as one order
higher than the tractions would make the most sense. The author, at first, tried this approach (also using
curved elements), but difficulty was encountered in obtaining non-singular systems. Nevertheless, an
advantage of using linear interpolations is that it allows the integrations to be performed analytically,
which yields a code that executes very quickly.
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