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1. Poisson’s Equation 
 

Figure 1 below depicts a film (e.g., a soap film) on a rim being deflected by a transverse pressure 

loading 𝑝. In the figure, 𝐴 is the plane of the rim, and 𝑡 is the tangential length coordinate around the rim 

measured in the counterclockwise sense. A side view of Fig. 1 is shown in Fig. 2, where 𝑇 is the surface 
 

 

 

Figure 1. Schematic of a (deflected) film 

                subjected to a pressure loading. 

Figure 2. A side view of the film in Fig. 1. 

 

tension of the film (force per unit length). From Fig. 2, for small transverse deflections 𝑢, 

tan𝛽 ≈ sin𝛽 ≈ 𝛽 = −
∆𝑢

∆𝑛
= −𝑢,𝑛  ,                                                                                          (1) 

where 𝑛 is the outward-pointing normal coordinate to the rim, and the comma represents differentiation 

with respect to that coordinate. Transverse equilibrium is then 

𝑇 ∮sin𝛽 d𝑡

0

𝑡

≈ −𝑇 ∮𝑢,𝑛d𝑡

0

𝑡

= ∫𝑝d𝐴

0

𝐴

  ,                                                                                     (2) 

or via the Divergence Theorem, 

−𝑇 ∫𝑢,𝑖𝑖d𝐴

0

𝐴

= ∫p𝑑𝐴

0

𝐴

                                                                                                                    (3) 

so that the governing equation for the deflection of the film is 

𝑇𝑢,𝑖𝑖 + 𝑝 = 0    or     𝑇∇2𝑢 + 𝑝 = 0  ,                                                                                        (4) 

which is Poisson’s equation (and ∇2 is the Laplacian operator). In rectangular coordinates 

∇2𝑢 = 𝑢,𝑥𝑥 + 𝑢,𝑦𝑦  ,                                                                                                                      (5) 

and in polar coordinates 

∇2𝑢 = 𝑢,𝑟𝑟 +
1

𝑟
𝑢,𝑟 +

1

𝑟2
𝑢,𝜃𝜃  .                                                                                                   (6) 
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2. Example in Rectangular Coordinates 
 

Consider the 𝐿 × 𝐻 rectangular domain, pictured in Fig. 3, subjected to the “bubble” pressure 

 

distribution 

𝑝 = 𝑝0 cos  ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ),                            (7) 

where 𝑝0 is the pressure at the origin. The 

boundary conditions are 

𝑢 = 0                                                                          (8) 

on all four faces. Here, the governing equation is, 

cf., eqns. (4) and (5) of §1, 

𝑢,𝑥𝑥 + 𝑢,𝑦𝑦 = −
1

𝑇
𝑝0 cos  ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .   (9) 

 

Figure 3. Rectangular domain as described in the 

               text. 

Equation (9) is solved with a displacement of the 

form 

 

𝑢 = 𝑘 cos  ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                                                  (10) 

Note that eqn. (10) satisfies the boundary conditions (8). In any case, substituting eqn. (10) into eqn. (9) 

yields the value of 𝑘, viz., 

𝑘 =
𝑝0

𝜋2𝑇
 (

𝐿2𝐻2

𝐿2 + 𝐻2) .                                                                                                                (11) 

Also, the gradients are 

𝑢,𝑥 = −𝑘
𝜋

𝐿
sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 )  ,          𝑢,𝑦 = −𝑘

𝜋

𝐻
cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) .                 (12) 

 

3. Example in Polar Coordinates 
 

Consider the quarter-annular domain shown in Fig. 4 subjected to the pressure load 
 

 

𝑝 =
2𝐹

𝑏2 − 𝑎2
 cos 𝜃  ,                                                  (13) 

where 𝐹 is the net force acting on the domain, i.e., 

𝐹 = ∫𝑝d𝐴

0

𝐴

 .                                                                (14) 

In this case the governing equation is 

𝑢,𝑟𝑟 +
1

𝑟
𝑢,𝑟 +

1

𝑟2
𝑢,𝜃𝜃 = −

2𝐹

𝑇(𝑏2 − 𝑎2)
cos 𝜃  ,   (15) 

Figure 4. Quarter-annular domain as described 

                in the text. 

cf., eqns. (4) and (6) of §1. The boundary conditions 

for the problem are 

 

𝑢,𝑛 = 0  on  𝜃 = 0 ,     and    𝑢 = 0  on the other three boundaries.                             (16) 
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Assuming a displacement of the form 

𝑢 = 𝑓(𝑟) cos 𝜃                                                                                                                                      (17) 

eqn. (15) becomes 

𝑓′′ +
1

𝑟
𝑓′ −

1

𝑟2
𝑓 = −

2𝐹

𝑇(𝑏2 − 𝑎2)
 ,                                                                                               (18) 

whose general solution is 

𝑓 = 𝑘1𝑟 +
𝑘2

𝑟
−

2𝐹

3𝑇(𝑏2 − 𝑎2)
𝑟2  ,          𝑓′ = 𝑘1 −

𝑘2

𝑟2
−

4𝐹

3𝑇(𝑏2 − 𝑎2)
𝑟 .                             (19) 

Also, the components of the gradient are 

(𝛁𝑢)𝑟 = 𝑢,𝑟 = 𝑓′(𝑟) cos 𝜃   ,          (𝛁𝑢)𝜃 =
1

𝑟
𝑢.𝜃 = −

1

𝑟
𝑓(𝑟) sin𝜃  .                                     (20) 

Finally, one notes, from eqns. (17) and (20), that the boundary conditions are satisfied identically on the 

faces 𝜃 = 0 and 𝜃 = 𝜋 2⁄ . Then, satisfying the boundary conditions on 𝑟 = 𝑎 and 𝑟 = 𝑏 gives the 

values of the constants 

𝑘1 =
2𝐹(𝑏3 − 𝑎3)

3𝑇(𝑏2 − 𝑎2)2
  ,          𝑘2 = −

2𝐹𝑎2𝑏2(𝑏 − 𝑎)

3𝑇(𝑏2 − 𝑎2)2
  ,                                                              (21) 

which solves the problem at hand. 

 

4. The Green’s Function 
 

Let 𝑔 be the transverse displacement due to a unit point load applied to the film in the transverse 

direction at the origin of the coordinate system. The function 𝑔 is termed the Green’s function. The 
 

 

 

Figure 5. Unit point load applied at the origin of 

               the coordinate system. 

Figure 6. Translation of the unit point load to the 

                point 𝐱0. 
 

Green’s function satisfies ∇2𝑔 = 0 with 𝑔 = 𝑔(𝑟) only. Via eqn. (6) of §1 then 

𝑔′′ +
1

𝑟
𝑔′ = 0 .                                                                                                                                (22) 

The solution to eqn. (22) of interest is 

𝑔 = 𝑘 ln 𝑟 .                                                                                                                                      (23) 

Enforcing equilibrium with the point load gives, cf., Fig. 5, 

𝑇 ∫ 𝑔,𝑟𝑟d𝜃

2𝜋

0

= −1     ⇒      𝑘 = −
1

2𝜋𝑇
 .                                                                                  (24) 
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 Next, the unit point load is translated to the point 𝐱0 as depicted in Fig. 6. Denoting 

𝑋𝑖 = 𝑥𝑖 − 𝑥0𝑖  ,          𝑟 = √𝑋𝑖𝑋𝑖   ,                                                                                                         (25) 

the Green’s function becomes 

𝑔 = −
1

2𝜋𝑇
ln 𝑟.                                                                                                                                         (26) 

Using 𝑟,𝑖 = 𝑋𝑖 𝑟⁄ , the normal derivative of 𝑔 is 

𝑔,𝑛 = 𝑛𝑖𝑔,𝑖 = −
1

2𝜋𝑇
 
(𝐧 ∙ 𝐗)

𝑟2
 ,                                                                                                                (27) 

where 𝐧 is the outward-pointing unit normal vector on the boundary of the domain shown above in Fig. 6. 

Now, via the Divergence Theorem, 

𝑇 ∫𝑔,𝑖𝑖d𝐴

0

𝐴

= 𝑇 ∮𝑔,𝑛d𝑡

0

𝑡

= −𝛾     where     𝛾 = [ 
1 if 𝐱0 is in 𝐴                
0 if 𝐱0 is outside of 𝐴

 ]  .                                (28) 

Since 𝑔,𝑖𝑖 = 0 everywhere, except at 𝐱0 where it is singular, eqn. (28) gives 

𝑇 ∫𝑢𝑔,𝑖𝑖d𝐴

0

𝐴

= −𝛾𝑢(𝐱0) ,                                                                                                                       (29) 

where 𝑢 is a non-singular transverse displacement. 

 

 Finally, in what follows, the derivatives with respect to 𝐱0 will be required. Using the notation 

𝜕𝑓

𝜕𝑥0𝑖
≡ 𝑓:𝑖      ⇒      𝑋𝑖:𝑗 = −𝛿𝑖𝑗  ,          𝑟:𝑖 = −

𝑋𝑖

𝑟
  ,                                                                           (30) 

where 𝛿𝑖𝑗 is the Kronecker delta (or identity matrix), one obtains the derivatives 

𝑔:𝑖 =
1

2𝜋𝑇
 
𝑋𝑖

𝑟2
  ,          𝑔,𝑛:𝑖 =

1

2𝜋𝑇
 [ 

𝑛𝑖

𝑟2
− 2(𝐧 ∙ 𝐗)

𝑋𝑖

𝑟4
 ] .                                                                (31) 

 

5. The Reciprocal Theorem 
 

 The governing equation is 𝑇𝑢,𝑖𝑖 = −𝑝, or by multiplying by 𝑔, 

𝑇𝑔𝑢,𝑖𝑖 = −𝑔𝑝 .                                                                                                                                        (32) 

By the product rule of differentiation, 𝑔𝑢,𝑖𝑖 = (𝑔𝑢,𝑖),𝑖
− 𝑔,𝑖𝑢,𝑖 . Thus, eqn. (32) becomes 

𝑇(𝑔𝑢,𝑖),𝑖
− 𝑇𝑔,𝑖𝑢,𝑖 = −𝑔𝑝 .                                                                                                                 (33) 

Using the product rule of differentiation again, 𝑔,𝑖𝑢,𝑖 = (𝑔,𝑖𝑢)
,𝑖
− 𝑔,𝑖𝑖𝑢, then eqn. (33) gives 

𝑇(𝑔𝑢,𝑖),𝑖
− 𝑇(𝑔,𝑖𝑢)

,𝑖
+ 𝑇𝑔,𝑖𝑖𝑢 = −𝑔𝑝.                                                                                            (34) 

Integrating eqn. (34) over the domain 𝐴 and using the Divergence Theorem, one obtains 

𝑇 ∮𝑔,𝑛𝑢d𝑡

0

𝑡

− 𝑇 ∮𝑔𝑢,𝑛d𝑡

0

𝑡

− ∫𝑔𝑝d𝐴

0

𝐴

= 𝑇 ∮𝑔,𝑖𝑖𝑢d𝐴

0

𝐴

 .                                                                (35) 
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Finally, via eqn. (29) of §4, eqn. (35) becomes 

𝛾𝑢(𝐱0) = 𝑇 ∮𝑔𝑢,𝑛d𝑡

0

𝑡

− 𝑇 ∮𝑔,𝑛𝑢d𝑡

0

𝑡

+ ∫𝑔𝑝d𝐴

0

𝐴

 ,                                                                        (36) 

which is the Reciprocal Theorem, and is the basis of the Boundary Element Method. The gradient of 

eqn. (36) with respect to 𝐱0 is also useful, viz., for 𝛾 = 1 (𝐱0 is in 𝐴), 

𝑢:𝑖(𝐱0) = 𝑇 ∮𝑔:𝑖𝑢,𝑛d𝑡

0

𝑡

− 𝑇 ∮𝑔,𝑛:𝑖𝑢d𝑡

0

𝑡

+ ∫𝑔:𝑖𝑝d𝐴

0

𝐴

 .                                                                    (37) 

 

6. Integration Cell 
 

 The integrals over the domain 𝐴 in eqns. (36) and (37) are performed numerically using the 

 

integration cell depicted at left in Fig. 7, which is 

in normalized 𝛏–space spanning (−1,1) × (−1,1). 

The geometry of the cell in physical 𝐱–space is 

interpolated with the aid of the quadratic functions 

𝑎0 =
1

2
(−𝜉 + 𝜉2)                                         

𝑎1 = 1 − 𝜉2                                         (38) 

𝑎2 =
1

2
(𝜉 + 𝜉2) ,                                          

Figure 7. Cell used to perform the numerical area 

               integrations. 

the tensor product of which functions yield the 

desired interpolation functions 𝑆𝐼, viz., 

 

𝑆0 = 𝑎0(𝜉0)𝑎
0(𝜉1) 𝑆1 = 𝑎1(𝜉0)𝑎

0(𝜉1) 𝑆2 = 𝑎2(𝜉0)𝑎
0(𝜉1)

𝑆3 = 𝑎0(𝜉0)𝑎
1(𝜉1) 𝑆4 = 𝑎1(𝜉0)𝑎

1(𝜉1) 𝑆5 = 𝑎2(𝜉0)𝑎
1(𝜉1)

𝑆6 = 𝑎0(𝜉0)𝑎
2(𝜉1) 𝑆7 = 𝑎1(𝜉0)𝑎

2(𝜉1) 𝑆8 = 𝑎2(𝜉0)𝑎
2(𝜉1)

  ,                                             (39) 

which are the usual “shape” functions of the 9–node LaGrange finite element. Notwithstanding, the 

physical coordinates and pressure are interpolated via 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼 ,          𝑝 = 𝑆𝐼𝑝𝐼 ,                                                                                                                  (40) 

where 𝑥𝑖
𝐼 are the physical coordinates of the integration cell points, and 𝑝𝐼 are the pressures at those 

points. Now, differentiation of the first of eqns. (40) gives 

𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝑖
𝐼 ≡ 𝐴𝑖𝛼  ,          d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼  ,          d𝐴𝐱 = (det 𝐴𝑖𝛼)d𝐴𝛏 ,                                       (41) 

where d𝐴𝐱 is the differential of area in 𝐱–space, and d𝐴𝛏 is the differential of area in 𝛏–space. Thus, 

∫𝑓d𝐴𝐱

0

𝐴𝐱

= ∫𝑓

0

𝐴𝛏

(det 𝐴𝑖𝛼)d𝐴𝛏 .                                                                                                           (42) 

The integration (42) is carried out numerically via a Gauss-Legendre quadrature rule. 
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7. A Five Degree-of-Freedom Curved Boundary Element 
 

7.1. Element Geometry and Interpolations 

 

The boundary element is pictured below in Figs. 8 and 9. The displacement 𝑢 is interpolated via 

 

 
Figure 8. Degrees-of-freedom of the boundary 

               element. 

Figure 9. The curved version of the boundary 

                element. 
 

𝑢 = 𝑎0𝑢0 + 𝑎1𝑢2 + 𝑎2𝑢1 ,                                                                                                                                  (43) 

where the functions 𝑎𝐼 are given by eqns. (38) of §6. Note that along the element 𝜉 ∈ (−1,1) and 

𝑡 ∈ (0, 𝐿), where 𝐿 is the length of the element. The mid-node 2 of the element is located at 𝜉 = 0, or 

equivalently, at 𝑡 = 𝐿 2⁄ . While 𝑢 is interpolated as being quadratic, the normal derivative 𝑢,𝑛 is 

interpolated as being linear, viz., 

𝑢,𝑛 = 𝑏0𝑢,𝑛
0 + 𝑏1𝑢,𝑛

1  ,          𝑏0 =
1

2
(1 − 𝜉) ,          𝑏1 =

1

2
(1 + 𝜉) .                                                              (44) 

Now, the outward-pointing unit normal vector is given by 

𝐧 = cos𝛼 𝐞𝑥 + sin𝛼 𝐞𝑦 ,                                                                                                                                       (45) 

where 𝐞𝑥 and 𝐞𝑦 are the Cartesian base vectors. The angle is interpolated through the element as 

𝛼 = 𝑏0𝛼0 + 𝑏1𝛼1 ,                                                                                                                                                  (46) 

where 𝛼𝐼 are the nodal values of the angle. 

 

 The element may either be straight or curved. If it is straight, then 

𝛼 ≡ constant ,          𝑥𝑖 = 𝑏𝐼𝑥𝑖
𝐼 ,          𝐿 = √(𝑥0

1 − 𝑥0
0)2 + (𝑥1

1 − 𝑥1
0)2 .                                                      (47) 

The quantities 𝑥𝑖
𝐼 (node 𝐼 = 0,1) are the nodal coordinates of the element. If the element is curved, as 

pictured in Fig. 9, then 𝛼,𝑡 = 𝑐 ≡ constant, i.e., it has constant curvature 𝑐 (it is a circular arc with center 

of curvature 𝐶 in Fig. 9). Note that curvature may be positive or negative. Notwithstanding, in this case 

the interpolations are 

𝑐 =
cos𝛼1 − cos𝛼0

𝑥0
1 − 𝑥0

0   or  𝑐 =
sin𝛼1 − sin𝛼0

𝑥1
1 − 𝑥1

0   ,      𝐿 =
𝛼1 − 𝛼0

𝑐
  ,      𝑥0 =

cos𝛼

𝑐
  ,     𝑥1 =

sin𝛼

𝑐
 .    (48) 
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The interpolations (43) and (44) may be written as 

𝑣𝐼 =

[
 
 
 
 

 

𝑢0

𝑢,𝑛
0

𝑢2

𝑢1

𝑢,𝑛
1

 

]
 
 
 
 

=

[
 
 
 
 

 

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

 

]
 
 
 
 

 ,          𝐴𝐼 =

[
 
 
 
 

 

𝑎0

0
𝑎1

𝑎2

0

 

]
 
 
 
 

 ,          𝐵𝐼 =

[
 
 
 
 

 

0
𝑏0

0
0
𝑏1

 

]
 
 
 
 

 ,          𝑢 = 𝐴𝐼𝑣𝐼 ,          𝑢,𝑛 = 𝐵𝐼𝑣𝐼 .              (49) 

 

7.2. Boundary Values Solution 

 

Substituting the interpolations (49) into eqn. (36) of §5, with 𝛾 = 0 for 𝐱0 outside of 𝐴, one 

obtains the relationship for the element 

𝐾𝐼𝑣𝐼 = 𝑀 ,          𝐾𝐼 = 𝑇 ∫(𝑔,𝑛𝐴𝐼 − 𝑔𝐵𝐼)d𝑡

𝐿

0

 ,          𝑀 = ∫𝑔𝑝d𝐴

0

𝐴

 .                                                           (50) 

The integrals over the length of the element are performed using Gauss-Legendre quadrature with 

∫𝑓d𝑡

𝐿

0

=
𝐿

2
∫𝑓d𝜉

1

−1

 .                                                                                                                                                (51) 

 Assembling eqn. (50) over all the boundary elements of the discretized boundary gives a system 

of equations relating all the degrees-of-freedom on the boundary. The boundary conditions for the 

problem need to be applied to this system to obtain equations which may be solved for the unknown 

boundary values. The two cases of admissible boundary conditions are listed below in the table. 
 

Case Prescribed Unknown 

0 𝑢 𝑢,𝑛 

1 𝑢,𝑛 𝑢 

 

For each unknown boundary value, a singularity 𝐱0 is placed near its boundary node to generate a single 

equation. Traditionally, the singularity is placed on the boundary node, but for more complicated systems 

of partial differential equations, this choice can be problematical. Consequently, here it is chosen to place 

the singularity outside of the domain 𝐴 near the boundary node as depicted in Figs. 10 and 11 below. In 

these figures the prescribed boundary values are indicated in red, and the red points indicate the 

placement of the singularities. 

  

Figure 10. Boundary condition case 0 as described 

                  in the text. 

Figure 11. Boundary condition case 1 as described 

                  in the text. 
 

Again, once the boundary conditions are applied, the resulting system may be solved for the unknown 

boundary values. 
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7.3. Calculation of Gradients on the Boundary 

 

 Having all the boundary values known, the gradients 𝑢,𝑖 on the boundary may be calculated as  
 

   

Figure 12. Adjoining boundary 

                 elements. 

Figure 13. Boundary element 

                  after a corner. 

Figure 14. Boundary element 

                  before a corner. 
 

follows. When discretizing the boundary, nodes on the corners are double nodes, with one adjoining 

element belonging to one face, and the other element belonging to the other face. In the calculations, the 

continuity of the corner displacements 𝑢 is not directly enforced for the two elements adjoining the 

corner, but in the numerical solution they come out to be continuous for all practical purposes. 

Notwithstanding, in Figs. 12 through 14 above, the red nodes are nodes 0 and 1 of each element, and the 

black nodes are the midpoint node 2. Figure 12 shows two adjoining elements. Here, the tangential 

gradient at point 2 in the figure is calculated via central difference as 

𝑢,𝑡
2 ≈

𝑢3 − 𝑢1

1
2

(𝐿0 + 𝐿1)
 .                                                                                                                (52) 

Figure 13 shows the case where a boundary element is directly after a corner. The square node 0 is on a 

corner, and the gradient at point 0 is calculated with forward difference 

𝑢,𝑡
0 ≈

𝑢2 − 𝑢0

1
2 𝐿

 .                                                                                                                     (53) 

Finally, when the element is directly before the corner (Fig. 14, where the square node 1 is on a corner), 

backward difference is used for node 1, viz., 

𝑢,𝑡
1 ≈

𝑢1 − 𝑢2

1
2

𝐿
 .                                                                                                                    (54) 

At this point then, 𝑢,𝑡 is known at all the major (two degree-of-freedom) nodes, as is 𝑢,𝑛 (from the 

element vectors 𝑣𝐼). With obvious notation then, the gradients may be transformed from the 𝑛𝑡–system to 

the 𝑥𝑦–system via 

𝜓𝑖𝑗 = [ 
cos𝛼 sin𝛼

− sin𝛼 cos𝛼
 ] ,          𝑢,𝑗

𝑥𝑦
= 𝑢,𝑖

𝑛𝑡𝜓𝑖𝑗 .                                                          (55) 

Once 𝑢,𝑖
𝑥𝑦

 is calculated, the values of 𝑢 and 𝑢,𝑖
𝑥𝑦

 are averaged at the corner nodes to enforce continuity. 

 

7.4. Calculation of the Solution Inside of the Domain 

 

 The discretized form of eqns. (36) and (37) of §5 (with 𝛾 = 1 for 𝐱0 in the domain 𝐴) are 

𝑢(𝐱0) = 𝑀 − 𝐾𝐼𝑣𝐼 ,          𝑢:𝑖(𝐱0) = 𝑀:𝑖 − 𝐾:𝑖
𝐼𝑣𝐼                                                       (56) 

with 

𝐾:𝑖
𝐼 = 𝑇 ∫(𝑔,𝑛:𝑖𝐴

𝐼 − 𝑔:𝑖𝐵
𝐼)d𝑡

𝐿

0

 ,          𝑀:𝑖 = ∫𝑔:𝑖𝑝d𝐴

0

𝐴

 .                                           (57) 
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So, by placing a singularity 𝐱0 at each internal point of 𝐴 in turn, performing the circuit integrals for each 

placement yields the solution for 𝑢 and 𝛁𝑢 at each of the internal points. Thus, the entire solution is had. 

 

8. Numerical Example – Rectangular Coordinates 
 

 

          Here the problem solved 

above in §2 is solved numerically. 

Owing to symmetry, only the upper 

right quadrant of the domain 𝐴 in 

Fig. 3 of §2 is analyzed. The 

corresponding boundary conditions 

are then 

𝑢 = 0 on 𝑥 =
𝐿

2
 and 𝑦 =

𝐻

2
 ,             

𝑢,𝑛 = 0 on 𝑥 = 0 and 𝑦 = 0 .  (58) 

The constants used in the analysis 

are 

𝐿 = 12.0 in ,          𝐻 = 8.0 in          
 

Figure 15. Computational grid used in the analysis as described 

                 in the text. 
𝑝0 = 5 × 10−3 psi ,                  (59) 

𝑇 = 4.14 × 10−4  lb in⁄  .                  
 

For lack of a better choice, the constant 𝑇 in eqns. (59) is for water. 

 

 Figure 15 above shows the computational grid used in the analysis. The black and blue points in 

the grid are a 37 × 25 array of points. The black points are on the boundary of the domain, and between 

the black points are the 120 boundary elements (the central node 2 of each boundary element is not 

shown). Also, the black points on the corners are double nodes. The 805 blue points are in the interior of 

the domain. The domain is spanned by an 18 × 12 array of 216 integration cells, cf., §6. The resulting 

system to solve consists of 368 degrees-of-freedom with 184 equations. The 184 red points in the figure. 

 

are where the singularity points 𝐱0 are placed to 

generate the equations. Finally, all integrations are 

performed with the 16–point (or 16 × 16 point) 

Gauss-Legendre quadrature rule. 

 

          Figure 16 at left shows the exact (solid 

curve) and numerical (plotted points) solutions for 

the displacement 𝑢 along the bottom surface of 

the domain. The displacements are from the 

boundary element vector 𝑣𝐼, cf, eqn. (49) of §7. 

For all practical purposes, the numerical method 

reproduces the exact solution. Figure 17 below 

shows the results for the displacement gradient 𝑢,𝑥 

also along the bottom surface. As described in 

§7.3, the numerical results in Fig. 17 are 

calculated by a finite difference procedure. Once  

Figure 16. Exact and numerical results for 

                 displacement 𝑢 along 𝑦 = 0. 

again, the numerical results basically reproduce 

the exact solution. 
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Figure 17. Exact and numerical results for 

                 displacement gradient 𝑢,𝑥 along 𝑦 = 0. 

Figure 18. Exact and numerical results for 

                 displacement gradient 𝑢,𝑥 along 

                 𝑥 = 6 in. 
 

 Figure 18 at above right shows the results for 𝑢,𝑥 along the right face of the domain. The 

numerical results are from the boundary element vector 𝑣𝐼, and as before, the exact solution essentially is 

reproduced. 
 

  
Figure 19. Exact and numerical results for 

                 displacement 𝑢 along 𝑦 = 2 in. 

Figure 20. Exact and numerical results for 

                 displacement gradients 𝑢,𝑥 (red) and 

                 𝑢,𝑦 (blue) along 𝑦 = 2 in. 
 

Figures 19 and 20 above show results from along the horizontal line 𝑦 = 𝐻 2⁄  running through 

the interior of the domain. Once again, the exact and numerical solutions basically coincide. 



A Boundary Element Method for Poisson’s Equation 

11 
 

  
Figure 21. Exact and numerical results for 

                 displacement 𝑢 along 𝑥 = 3 in. 
Figure 22. Exact and numerical results for 

                 displacement gradients 𝑢,𝑥 (red) and 

                 𝑢,𝑦 (blue) along 𝑥 = 3 in. 
 

 Finally, Figs. 21 and 22 above show results from along the vertical line 𝑥 = 𝐿 2⁄  running through 

the interior of the domain. As previously, the numerical results are highly accurate. 

 

9. Numerical Example – Polar Coordinates 

 

 Here, the problem solved previously in §3 is analyzed numerically. The domain analyzed is that 

of Fig. 4 of §3. The constants used for the analysis are 

𝑎 = 6.0 in ,          𝑏 = 12.0 in ,          𝐹 = 2.0 lb ,          𝑇 = 4.14 × 10−4  lb in⁄ .                     (60) 

 

The computational grid used for the calculations is shown below in Fig. 23. The black and blue 

points in the figure are a 25 (radial) by 37 (tangential) array of points. The black points are on the 

boundary of the domain, and between the black points run 120 boundary elements. Note that the midpoint 

nodes 2 of the boundary elements are not shown. The 805 blue points are in the interior of the domain. 

Also, the domain is spanned by a 12 (radial) by 18 (tangential) array of 216 integration cells, cf., §6. The 

resulting system contains 368 degrees-of-freedom with 148 equations. The 148 red points in the figure are 

where the singularities 𝐱0 are placed to generate the necessary equations. Finally, the integrations were 

carried out using the 24–point (or 24 × 24 point) Gauss-Legendre quadrature rule. 

 

Figure 24 below shows the exact solution (solid curve) and numerical results (plotted points) for 

the displacement 𝑢 along the boundary 𝜃 = 0. The numerical results are from the element vectors 𝑣𝐼, cf., 

eqn. (49) of §7. As is evident, the numerical results are highly accurate. 

 

Figure 25 below shows the exact and numerical results for the normal derivative 𝑢,𝑛 along the 

outer boundary 𝑟 = 𝑏. Once again, the numerical results are from the solution vector 𝑣𝐼, and the 

numerical results are very accurate. 
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Figure 23. Computational grid used in the analysis as explained in the text. 

  
Figure 24. Exact and numerical results for 

                 displacement 𝑢 at 𝜃 = 0. 

Figure 25. Exact and numerical results for normal 

                  derivative 𝑢,𝑛 at 𝑟 = 𝑏. 
 

 Figure 26 below shows the results for the normal derivative 𝑢,𝑛 on the boundary located at 

𝜃 = 𝜋 2⁄ . As before, the numerical results are from the vector 𝑣𝐼. Except for the single point at 𝑟 = 𝑏, the 

numerical results again are accurate. 
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Figure 26. Exact and numerical results for normal 

                 derivative 𝑢,𝑛 at 𝜃 = 𝜋 2⁄ . 

Figure 27. Exact and numerical results for normal 

                 derivative 𝑢,𝑛 at 𝑟 = 𝑎. 
 

 Figure 27 above shows the results for the normal derivative 𝑢,𝑛 on the boundary located at 𝑟 = 𝑎. 

Again, the numerical results are from 𝑣𝐼. While the magnitudes of the numerically calculated points are 

accurate, there are slight oscillations exhibited by the numerical solution on 𝜃 ∈ (0, 𝜋 4⁄ ). This is the least 

accurate part of the solution, and this behavior will be discussed later in §10. 

  
Figure 28. Exact and numerical results for 

                 displacement gradient 𝑢,𝑥 at 𝜃 = 0. 

Figure 29. Exact and numerical results for 

                 displacement gradients 𝑢,𝑥 (red) and 

                 𝑢,𝑦 (blue) at 𝑟 = 𝑏. 
 

 Figure 28 above shows the results for the displacement gradient 𝑢,𝑥 on the boundary located at 

𝜃 = 0. The numerical results were calculated using the finite difference procedure described in §7.3. As is 

evident, the numerical results are highly accurate. 
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 Figure 29 above shows the displacement gradients 𝑢,𝑥 and 𝑢,𝑦 on the boundary located at 𝑟 = 𝑏. 

Again, the numerical results were calculated using the finite difference procedure of §7.3. All the 

numerical results are very accurate except for the little blip in 𝑢,𝑥 near 𝜃 = 0, although the magnitude of 

𝑢,𝑥 there is accurate. 

  
Figure 30. Exact and numerical results for 

                 displacement gradient 𝑢,𝑥 at 𝜃 = 𝜋 2⁄ . 

Figure 31. Exact and numerical results for 

                 displacement gradients 𝑢,𝑥 (red) and 

                 𝑢,𝑦 (blue) at 𝑟 = 𝑎. 
 

 Figure 30 shows the displacement gradient 𝑢,𝑥 on the boundary at 𝜃 = 𝜋 2⁄ . Except for the sign, 

these are the same as the results shown in Fig. 26. In Fig. 31 above, the results shown are for the 

displacement gradients 𝑢,𝑥 and 𝑢,𝑦 on the boundary 𝑟 = 𝑎. The slight oscillations in 𝑢,𝑥 on 𝜃 ∈ (0, 𝜋 4⁄ ) 

are due to those in 𝑢,𝑛 in Fig. 27. The numerical results for 𝑢,𝑦 are more accurate, but this component too 

exhibits small oscillations near 𝜃 = 𝜋 4⁄ . 

  
Figure 32. Exact and numerical results for 

                 displacement 𝑢 at 𝜃 = 𝜋 8⁄ . 

Figure 33. Exact and numerical results for 

                 displacement gradients 𝑢,𝑥 (red) and 

                 𝑢,𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 
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 Figures 32 and 33 above give the results of the numerical calculations for the radial line through 

the domain at  𝜃 = 𝜋 8⁄ . Both the numerical results for the displacement 𝑢 and the displacement gradients 

𝑢,𝑥 and 𝑢,𝑦 are highly accurate. Finally, Figs. 34 and 35 below give the calculated results for 𝑢, 𝑢,𝑥 and 

𝑢,𝑦 on the circular arc located at 𝑟 = 8.98984 in in the domain. Once again, the numerically calculated 

results are highly accurate. 

  
Figure 34. Exact and numerical results for 

                 displacement 𝑢 at 𝑟 = 8.98984 in. 

Figure 35. Exact and numerical results for 

                 displacement gradients 𝑢,𝑥 (red) and 

                 𝑢,𝑦 (blue) at 𝑟 = 8.98984 in. 

 

10. Closing Remarks 
 

A minor comment is that the constants used for the analyses in §8 and §9 are unrealistic: they 

give unrealistically large displacements. Nevertheless, a valid comparison of the numerical method with 

analytical results has been made. 

 

While completing this work, the author has learned the following. First, it is necessary to 

interpolate the displacement one order higher than that of the normal derivative. For example, using the 

same order interpolation for both 𝑢 and 𝑢,𝑛 can give oscillatory solutions for the normal derivative, or 

either the numerical solution which results will not converge to the correct result. 

 

The author has also come to the conclusion that using curved elements is necessary. For instance, 

for the problem in §9, using straight elements (with 𝑢 interpolated one order higher than 𝑢,𝑛) gives much 

more inaccurate solutions, especially for 𝑢,𝑛. 

 

Finally, the slight oscillations that occur in the solution for the gradient (cf., Figs. 27 and 31 of §9) 

could be the result of a slightly ill-conditioned system, but the author must admit that he has not looked 

into this. 

 


