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1. Governing Equations 
 

 Let 𝑢 be the transverse displacement of the plate. Then, the rotation vector 𝜙𝑖 is 

𝜀𝑖𝑗 = [ 
0 1

−1 0
 ]  ,          𝜙𝑖 = 𝜀𝑖𝑗𝑢,𝑗     or     𝜙𝑥 = 𝑢,𝑦  ,          𝜙𝑦 = −𝑢,𝑥  ,                                        (1.1) 

where 𝜀𝑖𝑗 is the two-dimensional alternating symbol, repeated indices are summed, and the comma 

denotes differentiation with respect to the (spatial) rectangular coordinates. The components of the 

curvature tensor 𝜅𝑖𝑗 are 

𝜅𝑖𝑗 = 𝑢,𝑖𝑗     or     𝜅𝑥𝑥 = 𝑢,𝑥𝑥  ,          𝜅𝑦𝑦 = 𝑢,𝑦𝑦  ,          𝜅𝑥𝑦 = 𝜅𝑦𝑥 = 𝑢,𝑥𝑦  .                                   (1.2) 

Next, Hooke’s Law for the plate is 

𝐷 =
𝐸ℎ3

12(1 − 𝜈2)
  ,          𝑀𝑥𝑥 = −𝑀𝑦𝑦 = 𝐷(1 − 𝜈)𝜅𝑥𝑦  ,                                                                             

𝑀𝑥𝑦 = −𝐷(𝜅𝑥𝑥 + 𝜈𝜅𝑦𝑦)  ,          𝑀𝑦𝑥 = 𝐷(𝜈𝜅𝑥𝑥 + 𝜅𝑦𝑦)  ,                                                                (1.3) 

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. In eqns. (1.3), 𝑀𝑖𝑗 are the components of the 

moment tensor, with 𝑀𝑖𝑗 being the moment vector acting in the 𝑗–direction on an internal face whose 

normal is the 𝑖–direction. Moment equilibrium is 

𝑉𝑥 = 𝑀𝑥𝑦,𝑥 + 𝑀𝑦𝑦,𝑦  ,          𝑉𝑦 = −𝑀𝑥𝑥,𝑥 − 𝑀𝑦𝑥,𝑦  ,                                                                         (1.4) 

where 𝑉𝑖 are the components of the (transverse) shear vector (𝑉𝑖 is the transverse force per plate thickness 

on an internal face whose normal is in the 𝑖–direction). Notwithstanding, substitution of eqns. (1.2)  

and (1.3) into eqns. (1.4) gives 

𝑉𝑖 = −𝐷𝑢,𝑗𝑗𝑖     or     𝑉𝑥 = −𝐷(𝑢,𝑥𝑥𝑥 + 𝑢,𝑥𝑦𝑦)  ,          𝑉𝑦 = −𝐷(𝑢,𝑥𝑥𝑦 + 𝑢,𝑦𝑦𝑦)  .                    (1.5) 

Now, transverse equilibrium is 

𝑉𝑖,𝑖 + 𝑞 = 0     or     𝑉𝑥,𝑥 + 𝑉𝑦,𝑦 + 𝑞 = 0  ,                                                                                          (1.6) 

where 𝑞 is the transverse force per unit area acting on the plate. Finally, substituting eqns. (1.5) into (1.6) 

yields the governing equation of the plate 

∇4𝑢 = 𝑢,𝑖𝑖𝑗𝑗 = 𝑢,𝑥𝑥𝑥𝑥 + 2𝑢,𝑥𝑥𝑦𝑦 + 𝑢,𝑦𝑦𝑦𝑦 =
𝑞

𝐷
  ,                                                                           (1.7) 

where ∇4𝑢 is the bi-harmonic of 𝑢. 

 

 In polar coordinates, the components of the rotation vector are 

𝜙𝑟 =
1

𝑟
𝑢,𝜃  ,          𝜙𝜃 = −𝑢,𝑟  ,                                                                                                           (1.8) 

and the curvatures are 

𝜅𝑟𝑟 = 𝑢,𝑟𝑟  ,          𝜅𝜃𝜃 =
1

𝑟2
𝑢,𝜃𝜃 +

1

𝑟
𝑢,𝑟  ,          𝜅𝑟𝜃 = 𝜅𝜃𝑟 =

1

𝑟
𝑢,𝑟𝜃 −

1

𝑟2
𝑢,𝜃  .                       (1.9) 

In polar coordinates, Hooke’s Law is the same as eqns. (1.3) with 𝑥 → 𝑟 and 𝑦 → 𝜃. In any case, the 

equations for the shear vector are 
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𝑉𝑟 = −𝐷 (𝑢,𝑟𝑟𝑟 +
1

𝑟
𝑢,𝑟𝑟 −

1

𝑟2
𝑢,𝑟 +

1

𝑟2
𝑢,𝑟𝜃𝜃 −

2

𝑟3
𝑢,𝜃𝜃)  ,                                                                                 

𝑉𝜃 = −𝐷 ( 
1

𝑟
𝑢,𝑟𝑟𝜃 +

1

𝑟2
𝑢,𝑟𝜃 +

1

𝑟3
𝑢,𝜃𝜃𝜃)  .                                                                                             (1.10) 

Finally, the bi-harmonic operator in eqn. (1.7) is 

∇4𝑢 = 𝑢,𝑟𝑟𝑟𝑟 +
2

𝑟
𝑢,𝑟𝑟𝑟 −

1

𝑟2
𝑢,𝑟𝑟 +

2

𝑟2
𝑢,𝑟𝑟𝜃𝜃 +

1

𝑟3
𝑢,𝑟 −

2

𝑟3
𝑢,𝑟𝜃𝜃 +

4

𝑟4
𝑢,𝜃𝜃 +

1

𝑟4
𝑢,𝜃𝜃𝜃𝜃 .          (1.11) 

 

 Finally, let 𝐧 be the outward-pointing unit normal vector on the boundary of the domain, and 𝐭 be 

the unit tangent vector along the boundary of the domain pointing in the counterclockwise sense. The 

moment vector 𝓜 acting on the boundary is 𝓜 = 𝐧 ∙ 𝐌 or ℳ𝑗 = 𝑛𝑖𝑀𝑖𝑗. In the boundary 𝑛𝑡–system, 

admissible boundary conditions are: prescribe either 𝜙𝑡 or ℳ𝑡 and either 𝑢 or 𝑉̅𝑛 at each point of the 

boundary, where 𝑉̅𝑛 = 𝑉𝑛 − ℳ𝑛,𝑡 is the Kirchhoff shear force. 

 

2. Example in Rectangular Coordinates 
 

 Here, the solution to a simple problem in rectangular coordinates is presented, which problem 

will be solved numerically later with the cell method. 
 

 

          The domain of the rectangular plate under 

consideration is shown at left in Fig. 1. The plate is 

subject to the distributed load 

𝑞 = −
𝜋2𝐹

4𝐿𝐻
cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                  (2.1) 

where 𝐹 > 0 is the net downward force of the distribution, 

i.e., 

∫𝑞d𝐴

0

𝐴

= −𝐹 .                                                     (2.2) 

Note that 𝑞 is zero on the boundary and is maximum at the 

origin. On all four faces the boundary conditions are 

𝑢 = 0 ,          ℳ𝑡 = 0 ,                                        (2.3) 

which are the so-called “simply-supported” boundary 

conditions. 

Figure 1. Domain of an 𝐿 by 𝐻 

               rectangular plate. 

 

 

 The governing eqn. (1.7) is, via eqn. (2.1), 

𝑢,𝑥𝑥𝑥𝑥 + 2𝑢,𝑥𝑥𝑦𝑦 + 𝑢,𝑦𝑦𝑦𝑦 = −
3𝜋2(1 − 𝜈2)𝐹

𝐸ℎ3𝐿𝐻
 cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                                                    (2.4) 

which is solved with a displacement of the form 

𝑢 = 𝑘 cos ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                                                                              (2.5) 

Substituting eqn. (2.5) into eqn. (2.4) gives that 
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𝑘 = −
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿3𝐻3

(𝐿2 + 𝐻2)2
 ]  𝐹.                                                                                                                 (2.6) 

With eqns. (2.5) and (2.6) the problem is solved. 

 

 By differentiation of eqn. (2.5) by way of eqn. (1.1), the rotation vector is 

𝜙𝑥 =
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿3𝐻2

(𝐿2 + 𝐻2)2
 ]  𝐹 cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) ,                                                                                       

𝜙𝑦 = −
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿2𝐻3

(𝐿2 + 𝐻2)2
 ]  𝐹 sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                       (2.7) 

Now, using eqn. (1.3), the moment components are 

𝑀𝑥𝑥 = −𝑀𝑦𝑦 = −
(1 − 𝜈)𝐹

4
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ] sin ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) ,                                                                     

𝑀𝑥𝑦 = −
𝐹

4
 [ 

𝐿𝐻(𝜈𝐿2 + 𝐻2)

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                                                                                 (2.8) 

𝑀𝑦𝑥 =
𝐹

4
 [ 

𝐿𝐻(𝐿2 + 𝜈𝐻2)

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                                                

Finally, differentiating eqn. (2.5) and using eqns. (1.5), one obtains the components of the shear vector 

𝑉𝑥 =
𝜋𝐹

4
 [ 

𝐻

𝐿2 + 𝐻2
 ] sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,          𝑉𝑦 =

𝜋𝐹

4
 [ 

𝐿

𝐿2 + 𝐻2
 ] cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) .      (2.9) 

Note that both the displacement 𝑢 and the bending moments 𝑀𝑥𝑦 and 𝑀𝑦𝑥 are zero on the boundary so 

that the boundary conditions (2.3) are satisfied. 

 

Now, at the upper right corner of the domain, the normal moment vector ℳ𝑛
− = 𝑀𝑥𝑥 before the 

corner and ℳ𝑛
+ = 𝑀𝑦𝑦 after the corner are, via the first of eqns. (2.8), 

ℳ𝑛
− = −ℳ𝑛

+ = −
(1 − 𝜈)𝐹

4
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ]                                                                                            (2.10) 

so that the corner force (at the upper right corner) is 

ℳ𝑛
− − ℳ𝑛

+ = −
(1 − 𝜈)𝐹

2
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ] .                                                                                              (2.11) 

 

3. Example in Polar Coordinates 
 

 Here a problem in polar coordinates is solved, which problem later will be solved numerically 

with the cell method. Specifically, below in Fig. 2 is shown the domain of a quarter-annular plate. The 

distributed load 𝑞 is zero. The boundaries at 𝜃 = 0 and 𝜃 = 𝜋 2⁄  are simply supported, i.e., 

𝑢 = 0 ,          ℳ𝑡 = 0 ,                                                                                                                                       (3.1) 

while the inner radius 𝑟 = 𝑎 is built in, i.e., 

𝑢 = 𝜙𝑡 = 0 .                                                                                                                                                       (3.2) 

A transverse sinusoidal edge traction is applied to the outer radius 𝑟 = 𝑏, viz., 
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ℳ𝑡 = 0 ,          𝑉̅𝑛 =
2𝐹

𝑏
sin4𝜃 ,                                                                                                                      (3.3) 

where 𝐹 > 0 is the total force of the traction over the interval 𝜃 ∈ [ 0 , 𝜋 4⁄  ]. 
 

 

          This problem may be solved with a displacement of 

the form 

𝑢 = 𝑓(𝑟) sin4𝜃 .                                                                   (3.4) 

With eqn. (3.4) and eqns. (1.8), the components of the rotation 

vector are 

𝜙𝑟 =
4

𝑟
 𝑓 cos 4𝜃 ,          𝜙𝜃 = −𝑓′ sin 4𝜃 .                     (3.5) 

Next, via eqns. (1.9) and Hooke’s Law, the moments are 

𝑀𝑟𝑟 = −𝑀𝜃𝜃 =
𝐸ℎ3

3(1 + 𝜈)
 ( 

1

𝑟
𝑓′ −

1

𝑟2
𝑓 ) cos 4𝜃,                    

𝑀𝑟𝜃 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑓′′ +

𝜈

𝑟
𝑓′ −

16𝜈

𝑟2
𝑓 ) sin4𝜃 ,   (3.6) 

Figure 2. The quarter-annular plate 

               under consideration. 𝑀𝜃𝑟 =
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝜈𝑓′′ +

1

𝑟
𝑓′ −

16

𝑟2
𝑓 ) sin 4𝜃 .                

 

Finally, eqn. (1.10) gives the components of the shear vector 

𝑉𝑟 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑓′′′ +

1

𝑟
𝑓′′ −

17

𝑟2
𝑓′ +

32

𝑟3
𝑓 ) sin4𝜃 ,                                                                                     

𝑉𝜃 = −
𝐸ℎ3

3(1 − 𝜈2)
 ( 

1

𝑟
𝑓′′ +

1

𝑟2
𝑓′ −

16

𝑟3
𝑓 ) cos 4𝜃 .                                                                                       (3.7) 

 

 On the boundary, the Kirchhoff shear forces are 

𝑟 = 𝑏 ⇒   𝑉̅𝑛 = 𝑉𝑟 −
1

𝑟
 
d𝑀𝑟𝑟

d𝜃
 ,            𝜃 = 0 ⇒   𝑉̅𝑛 = −𝑉𝜃 −

d𝑀𝜃𝜃

d𝑟
 ,                                                                     

𝜃 = 𝜋 2⁄  ⇒   𝑉̅𝑛 = 𝑉𝜃 +
d𝑀𝜃𝜃

d𝑟
 ,         𝑟 = 𝑎 ⇒   𝑉̅𝑛 = −𝑉𝑟 +

1

𝑟
 
d𝑀𝑟𝑟

d𝜃
 ,                                                       (3.8) 

or, respectively, for 𝑟 = 𝑏, 𝜃 = 0, 𝜃 = 𝜋 2⁄  and 𝑟 = 𝑎, 

𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑓′′′ +

1

𝑏
𝑓′′ −

(33 − 16𝜈)

𝑏2
𝑓′ +

16(3 − 𝜈)

𝑏3
𝑓 ] sin4𝜃 ,                                                       

𝑉̅𝑛 =
𝐸ℎ3

12(1 − 𝜈2)
 [ 

4(2 − 𝜈)

𝑟
𝑓′′ −

4(1 − 2𝜈)

𝑟2
𝑓′ −

8(7 + 𝜈)

𝑟3
𝑓 ] ,                                                                           

𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 

4(2 − 𝜈)

𝑟
𝑓′′ −

4(1 − 2𝜈)

𝑟2
𝑓′ −

8(7 + 𝜈)

𝑟3
𝑓 ] ,                                                            (3.9) 

𝑉̅𝑛 =
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑓′′′ +

1

𝑎
𝑓′′ −

(33 − 16𝜈)

𝑎2
𝑓′ +

16(3 − 𝜈)

𝑎3
𝑓 ] sin4𝜃 .                                                           
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 Now, substituting the displacement (3.4) into the governing equation ∇4𝑢 = 0, see eqn. (1.11), 

one obtains the differential equation 

𝑓′′′′ +
2

𝑟
𝑓′′′ −

33

𝑟2
𝑓′′ +

33

𝑟3
𝑓′ +

192

𝑟4
𝑓 = 0 .                                                                                                   (3.10) 

The solution to eqn. (3.10) is 

𝑓 =
𝑘1

𝑟4
+

𝑘2

𝑟2
+ 𝑘3𝑟

4 + 𝑘4𝑟
6 ,                                                                                                                                            

𝑓′ = −4
𝑘1

𝑟5
− 2

𝑘2

𝑟3
+ 4𝑘3𝑟

3 + 6𝑘4𝑟
5 ,                                                                                                                           

𝑓′′ = 20
𝑘1

𝑟6
+ 6

𝑘2

𝑟4
+ 12𝑘3𝑟

2 + 30𝑘4𝑟
4 ,                                                                                                         (3.11) 

𝑓′′′ = −120
𝑘1

𝑟7
− 24

𝑘2

𝑟5
+ 24𝑘3𝑟 + 120𝑘4𝑟

3 .                                                                                                            

Looking at eqns. (3.4) and (3.6), one sees that the boundary conditions (3.1) are satisfied identically. The 

conditions, respectively, 𝑢(𝑎, 𝜃) = 0, 𝜙𝑡 = −𝜙𝜃(𝑎, 𝜃) = 0, ℳ𝑡 = 𝑀𝑟𝜃(𝑏, 𝜃) = 0 and 

𝑉̅𝑛 = (2𝐹 𝑏⁄ ) sin 4𝜃 yield the system of equations to satisfy the boundary conditions (3.2) and (3.3), viz., 

[
 
 
 

 

1 𝑎4⁄              1 𝑎2⁄

−2 𝑎5⁄             − 1 𝑎3⁄
𝑎4              𝑎6

2𝑎3                3𝑎5

10(1 − 𝜈) 𝑏6⁄ 3(1 − 3𝜈) 𝑏4⁄

−5(1 − 𝜈) 𝑏6⁄ −3(2 − 𝜈) 𝑏4⁄

6(1 − 𝜈)𝑏2 5(3 − 𝜈)𝑏4

3(1 − 𝜈)𝑏2 −5𝜈𝑏4

 

]
 
 
 

[ 

𝑘1

𝑘2

𝑘3

𝑘4

 ] = [ 

0
0
0

3(1 − 𝜈2)𝐹 (2𝐸ℎ3)⁄

 ] . (3.12) 

Using the constants 

𝐸 = 3.0 × 107 psi ,     𝜈 = 0.3 ,     ℎ = 1.0 in ,     𝐹 = 10 000 lb ,     𝑎 = 120 in ,     𝑏 = 360 in ,       (3.13) 

the solution to eqn. (3.12) is 

𝑘1 = 1.666 591 940 231 4806 × 108 ,             𝑘2 = −1.547 802 450 020 5023 × 104 ,                              

𝑘3 = 1.354 435 354 756 7996 × 10−9 ,          𝑘4 = −3.252 532 373 598 9290 × 10−15  ,           (3.14) 

which constants solve the problem at hand. 

 

As a final comment, for the constants (3.13) and (3.14), the values of the four corner forces are 

 

Corner Force at (𝑟, 𝜃) Value (lb) 

(𝑀𝜃𝜃 − 𝑀𝑟𝑟)(𝑎, 0) 0 

(𝑀𝜃𝜃 − 𝑀𝑟𝑟)(𝑏, 0) −3935.94 

(𝑀𝑟𝑟 − 𝑀𝜃𝜃)(𝑏, 𝜋 2⁄ ) 3935.94 

(𝑀𝑟𝑟 − 𝑀𝜃𝜃)(𝑎, 𝜋 2⁄ ) 0 

 

4. Interpolations for the Cell Method 
 

The cell method uses the two-dimensional bi-quadratic differentiation cell depicted below in 

Figs. 3 and 4. With the aid of the quadratic functions 

𝑓0(𝑠) =
1

2
(−𝑠 + 𝑠2)  ,          𝑓1(𝑠) = 1 − 𝑠2  ,          𝑓2(𝑠) =

1

2
(𝑠 + 𝑠2)  ,          𝑠 ∈ (−1,1)                  (4.1) 
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one may construct the nine interpolation functions 𝑆𝐼 for the cell via the tensor product 

𝑆0 = 𝑓0(𝜉0)𝑓
0(𝜉1) 𝑆1 = 𝑓1(𝜉0)𝑓

0(𝜉1) 𝑆2 = 𝑓2(𝜉0)𝑓
0(𝜉1)

𝑆3 = 𝑓0(𝜉0)𝑓
1(𝜉1) 𝑆4 = 𝑓1(𝜉0)𝑓

1(𝜉1) 𝑆5 = 𝑓2(𝜉0)𝑓
1(𝜉1)

𝑆6 = 𝑓0(𝜉0)𝑓
2(𝜉1) 𝑆7 = 𝑓1(𝜉0)𝑓

2(𝜉1) 𝑆8 = 𝑓2(𝜉0)𝑓
2(𝜉1)

  ,          𝜉𝑖 ∈ (−1,1)  .      (4.2) 

Note that these nine functions correspond to the nine “shape functions” of the LaGrange bi-quadratic 

finite element. Notwithstanding, the mapping of the differentiation cell from 𝛏–space to 𝐱–space is 
 

  
Figure 3. Differentiation cell in normalized 

               𝛏–space. 

Figure 4. Differentiation cell in (physical)  

               𝐱–space. 
 

achieved via 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼  ,                                                                                                                                      (4.3) 

where 𝑥𝑖
𝐼 are the coordinates of the cell’s points (see Fig. 4). The differentials of eqn. (4.3) are then 

d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼  ,          𝐴𝑖𝛼 =
𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝑖
𝐼  ,          𝐴𝑖𝛼,𝛽 = 𝑆,𝛼𝛽

𝐼 𝑥𝑖
𝐼  ,                                        (4.4) 

and 

d𝜉𝛼 = 𝐴𝛼𝑖
−1d𝑥𝑖  ,          𝐴𝛼𝑖

−1 =
𝜕𝜉𝛼

𝜕𝑥𝑖
  .                                                                                             (4.5) 

Now, with the derivative 

𝜕𝐴𝛾𝑗
−1

𝜕𝜉𝛽
= −𝐴𝛾𝑖

−1𝐴𝑖𝛼,𝛽𝐴𝛼𝑗
−1  ,                                                                                                             (4.6) 

one finds that the physical gradients of the interpolation functions are, which are obtained via the Chain 

Rule, 

𝑆,𝑗
𝐼 = 𝑆,𝛼

𝐼 𝐴𝛼𝑗
−1  ,          𝑆,𝑗𝑘

𝐼 = (𝑆,𝛾𝛽
𝐼 − 𝑆,𝛼

𝐼 𝐴𝑖𝛾,𝛽𝐴𝛼𝑖
−1)𝐴𝛽𝑘

−1𝐴𝛾𝑗
−1  .                                                 (4.7) 

Thus, a field variable 𝑔 and its physical gradients may be interpolated within the cell as 

𝑔 = 𝑆𝐼𝑔𝐼  ,          𝑔,𝑖 = 𝑆,𝑖
𝐼𝑔𝐼  ,          𝑔,𝑖𝑗 = 𝑆,𝑖𝑗

𝐼 𝑔𝐼  ,                                                                  (4.8) 

where 𝑔𝐼 are the values of the field variable at the cell’s points. 

 

 To calculate the Kirchhoff force on the boundary, the boundary differentiation segments pictured 

below in Figs. 5 and 6 are used. On the boundary, the mapping from normalized 𝑠–space to (physical) 

𝑡–space is done via, similarly to eqn. (4.3), 



The Cell Method for Classical Plate Theory 
 

8 
 

𝑥𝑖 = 𝑓𝐼𝑥𝑖
𝐼  ,                                                                                                                                     (4.9) 

where the three functions 𝑓𝐼(𝑠) are as in eqns. (4.1) and 𝑥𝑖
𝐼 are the coordinates of the boundary segment’s 

points. Note that, depending on which face (in Fig. 3) the boundary segment belongs to, the points in 

Figs. 3 and 4 need to be renumbered as per Figs. 5 and 6. Nonetheless, the differential of eqn. (4.9) is 
 

  
Figure 5. Boundary differentiation segment in 

               normalized 𝑠–space. 

Figure 6. Boundary differentiation segment in 

               (physical) 𝑡–space. 
 

d𝑥𝑖 = 𝑏𝑖d𝑠  ,          𝑏𝑖 = 𝑓,𝑠
𝐼𝑥𝑖

𝐼  ,                                                                                                   (4.10) 

and 

(d𝑡)2 = d𝑥𝑖d𝑥𝑖 = 𝑏𝑖𝑏𝑖(d𝑠)2      ⇒      d𝑡 = 𝑏d𝑠  ,          𝑏 = √𝑏𝑖𝑏𝑖  .                                 (4.11) 

Consequently, via the Chain Rule, 

𝑓,𝑡
𝐼 =

1

𝑏
𝑓,𝑠

𝐼                                                                                                                                       (4.12) 

so that a field variable 𝑔 and its tangential derivative may be interpolated along the boundary segment as 

𝑔 = 𝑓𝐼𝑔𝐼  ,          𝑔,𝑡 = 𝑓,𝑡
𝐼𝑔𝐼  .                                                                                                   (4.13) 

 

5. The Cell Method 
 

 Denote the normalized shear vector 𝑣𝑖 and the normalized moment tensor 𝑚𝑖𝑗 as 

𝑣𝑖 =
𝑉𝑖

𝐷
  ,          𝑚𝑖𝑗 =

𝑀𝑖𝑗

𝐷
  ,                                                                                                         (5.1) 

where 𝐷 is as in eqn. (1.3). Instead of using the fourth-order eqn. (1.7) directly, write the governing 

equations of classical plate theory as the six equations 
 

𝐰 =

[
 
 
 
 
 

 

𝑣𝑥

𝑣𝑦

𝑚𝑥𝑥

𝑚𝑥𝑦

𝑚𝑦𝑥

𝑢

 

]
 
 
 
 
 

 

𝑣𝑥 = 𝑚𝑥𝑦,𝑥 − 𝑚𝑥𝑥,𝑦                               

𝑣𝑦 = −𝑚𝑥𝑥,𝑥 − 𝑚𝑦𝑥,𝑦                           

𝑚𝑥𝑥 = (1 − 𝜈)𝑢,𝑥𝑦                                

𝑚𝑥𝑦 = −𝑢,𝑥𝑥 − 𝜈𝑢,𝑦𝑦                (5.2) 

𝑚𝑦𝑥 = 𝜈𝑢,𝑥𝑥 + 𝑢,𝑦𝑦                              

𝑣,𝑥 + 𝑣,𝑦 = −𝑞 𝐷⁄   ,                             

Figure 7. Vector of the nodal degrees of 

               freedom. 

 

which are merely, respectively, eqns. (1.5), (1.3) 
 

with (1.2), and (1.6) of Sec. 1. Each point (or node) of the differentiation cell of Fig. 4 then has six 

degrees-of-freedom, as pictured at above left in Fig. 7. Now, interpolate the field variables with the 

functions (4.2): 

𝑣𝑖 = 𝑆𝐽𝑣𝑖
𝐽  ,          𝑚𝑖𝑗 = 𝑆𝐽𝑚𝑖𝑗

𝐽   ,          𝑢 = 𝑆𝐽𝑢𝐽  ,                                                               (5.3) 
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where, respectively, 𝑣𝑖
𝐽
, 𝑚𝑖𝑗

𝐽
 and 𝑢𝐽 are the nodal values of the normalized shear vector, normalized 

moment tensor, and transverse displacement. Next, use the physical gradients of the interpolation 

functions to represent the derivatives in eqns. (5.2). Thus, the interpolated versions of eqns. (5.2), 

evaluated at point 𝐼, are 

𝑣𝑥
𝐼 − 𝑆(𝐼),𝑥

𝐽
𝑚𝑥𝑦

𝐽
+ 𝑆(𝐼),𝑦

𝐽
𝑚𝑥𝑥

𝐽
= 0                                                                                                                              

𝑣𝑦
𝐼 + 𝑆(𝐼),𝑥

𝐽
𝑚𝑥𝑥

𝐽
+ 𝑆(𝐼),𝑦

𝐽
𝑚𝑦𝑥

𝐽
= 0                                                                                                                              

𝑚𝑥𝑥
𝐼 − (1 − 𝜈)𝑆(𝐼),𝑥𝑦

𝐽
𝑢𝐽 = 0                                                                                                                                       

𝑚𝑥𝑦
𝐼 + [ 𝑆(𝐼),𝑥𝑥

𝐽
+ 𝜈𝑆(𝐼),𝑦𝑦

𝐽
 ] 𝑢𝐽 = 0                                                                                                               (5.4) 

𝑚𝑦𝑥
𝐼 − [ 𝜈𝑆(𝐼),𝑥𝑥

𝐽
+ 𝑆(𝐼),𝑦𝑦

𝐽
 ] 𝑢𝐽 = 0                                                                                                                         

𝑆(𝐼),𝑥
𝐽
𝑣𝑥

𝐽
+ 𝑆(𝐼),𝑦

𝐽
𝑣𝑦

𝐽
= −𝑞𝐼 𝐷⁄   ,                                                                                                                                

 

where 𝑆(𝐼)𝐽 means 𝑆𝐽 evaluated at point 𝐼. Now, write the 

six eqns. (5.4) at point 𝐼 in terms of matrices 

[ 𝐆0 𝐆1 𝐆2 … 𝐆7 𝐆8 ]  

[
 
 
 
 
 

 

𝐰0

𝐰1

𝐰2

⋮
𝐰7

𝐰8

 

]
 
 
 
 
 

= 𝐫  ,           (5.5) 

which notation will be convenient for prescribing the 

boundary conditions, and will be described later below. In 

eqns. (5.5), each 𝐆𝐽 is a 6 × 6 matrix, each 𝐰𝐽 is a 6 × 1  
matrix, and 𝐫 also is a 6 × 1 matrix.           Figure 8. Four copies of a computational 

               grid as explained in the text. 
 

 The computational procedure of the cell method is as follows. Consider the 4 × 4 computational 

grid of points shown at above right in Fig. 8, which grid possesses 96 degrees of freedom. The grid 

consists of four (overlapping) differentiation cells (shown in red and blue). At each of the internal (red) 

points, equations (5.5) are evaluated at node 4 of each cell. For points on the boundary (that are not a 

corner of the domain), eqns. (5.5) are evaluated at either points 1, 3, 5 or 7 of each cell (as appropriate). 

Finally, at the corner points, eqns. (5.5) are evaluated at either points 0, 2, 6 or 8 of each cell (again, as 

appropriate). At this juncture, a 96 × 96 system of algebraic equations has been generated, but the system 

will be rank-deficient by 24 equations (i.e., by two equations for each boundary point). This rank-

deficiency is removed by applying the boundary conditions for the problem. 

 

 Before applying the boundary conditions, each boundary node needs to be transformed to the 

boundary 𝑛𝑡–system. Consequently, the normalized shear components in the 𝑛𝑡–system are 

𝑣𝑛 = 𝑛𝑖𝑣𝑖  ,          𝑣𝑡 = 𝑡𝑖𝑣𝑖  ,                                                                                                                            (5.6) 

where 𝑛𝑖 and 𝑡𝑖 are the components of the boundary unit vectors 𝐧 and 𝐭. Equivalently, eqn. (5.6) is 

[ 
𝑣𝑛

𝑣𝑡
 ] = [ 

𝑛𝑥 𝑛𝑦

𝑡𝑥 𝑡𝑦
 ] [ 

𝑣𝑥

𝑣𝑦
 ] ≡ 𝐑 [ 

𝑣𝑥

𝑣𝑦
 ]   .                                                                                                           (5.7) 

Similarly, the normalized moment components are in the 𝑛𝑡–system, 

𝑚𝑛𝑛 = 𝑛𝑖𝑚𝑖𝑗𝑛𝑗  ,          𝑚𝑛𝑡 = 𝑛𝑖𝑚𝑖𝑗𝑡𝑗  ,          𝑚𝑡𝑛 = 𝑡𝑖𝑚𝑖𝑗𝑛𝑗  ,                                                              (5.8) 

or equivalently, 
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[ 

𝑚𝑛𝑛

𝑚𝑛𝑡

𝑚𝑡𝑛

 ] = [ 

𝑛𝑥
2 − 𝑛𝑦

2 𝑛𝑥𝑛𝑦 𝑛𝑥𝑛𝑦

𝑛𝑥𝑡𝑥 − 𝑛𝑦𝑡𝑦 𝑛𝑥𝑡𝑦 𝑡𝑥𝑛𝑦

𝑛𝑥𝑡𝑥 − 𝑛𝑦𝑡𝑦 𝑡𝑥𝑛𝑦 𝑛𝑥𝑡𝑦

 ] [ 

𝑚𝑥𝑥

𝑚𝑥𝑦

𝑚𝑦𝑥

 ] ≡ 𝐓 [ 

𝑚𝑥𝑥

𝑚𝑥𝑦

𝑚𝑦𝑥

 ]  .                                                               (5.9) 

Equations (5.7) and (5.9) can then be combined into the nodal transformation formulas shown below in 

Figs. 9 and 10. Now, say that eqn. (5.5) is for a cell point 𝐼 ≠ 1 and that point 𝐽 = 1 of the cell is on the 
 

𝐰xy =

[
 
 
 
 
 

 

𝑣𝑥

𝑣𝑦

𝑚𝑥𝑥

𝑚𝑥𝑦

𝑚𝑦𝑥

𝑢

 

]
 
 
 
 
 

          𝐰nt =

[
 
 
 
 

 

𝑣𝑛

𝑣𝑡
𝑚𝑛𝑛

𝑚𝑛𝑡
𝑚𝑡𝑛

𝑢

 

]
 
 
 
 

 

 

𝐔 = [ 
𝐑 𝟎 𝟎
𝟎 𝐓 𝟎
𝟎 𝟎 1

 ]  ,          𝐰nt = 𝐔 𝐰xy  ,          𝐰xy = 𝐔−1𝐰nt 

Figure 9. The degrees-of-freedom 

               for a computational node 

               in the 𝑥𝑦– and 

               𝑛𝑡–systems. 

Figure 10. Nodal transformation formulas between the 𝑥𝑦– and 

                 𝑛𝑡–systems. 

 

boundary, i.e., it is in the boundary 𝑛𝑡–system. Then eqn. (5.5) becomes 

[ 𝐆0 𝐆1𝐔−1 𝐆2 … 𝐆7 𝐆8 ]

[
 
 
 
 
 
 

 

𝐰xy
0

𝐰nt
1

𝐰xy
2

⋮
𝐰xy

7

𝐰xy
8

 

]
 
 
 
 
 
 

= 𝐫  .                                                                                        (5.10) 

Finally, in the case that eqn. (5.5) is for a cell point 𝐼 = 1 on the boundary, then eqn. (5.5) is 

[ 𝐔𝐆0 𝐔𝐆1𝐔−1 𝐔𝐆2 … 𝐔𝐆7 𝐔𝐆8 ]

[
 
 
 
 
 
 

 

𝐰xy
0

𝐰nt
1

𝐰xy
2

⋮
𝐰xy

7

𝐰xy
8

 

]
 
 
 
 
 
 

= 𝐔𝐫  .                                                                     (5.11) 

 

 The procedure for applying the boundary conditions is as follows. If the rotation 𝜙𝑡 is known, 

then equation number 3 (concerning 𝑚𝑛𝑡, cf., Fig. 9) at the boundary point 𝐼 is replaced with 

𝑡𝑖
𝐼𝜀𝑖𝑗𝑆(𝐼),𝑗

𝐽 𝑢𝐽 = 𝜙𝑡
𝐼  ,                                                                                                                                          (5.12) 

which follows from eqn. (1.1) and 𝜙𝑡 = 𝑡𝑖𝜙𝑖. If the Kirchhoff force 𝑉̅𝑛 is known, then equation number 5 

(concerning 𝑢) at the boundary point 𝐼 is replaced with 

𝑣𝑛
𝐼 − 𝑓(𝐼),𝑡

𝐽𝑚𝑛𝑛
𝐽 = 𝑣̅𝑛

𝐼 = 𝑉̅𝑛
𝐼 𝐷⁄  ,                                                                                                                      (5.13) 

which follows from 𝑉̅𝑛 = 𝑉𝑛 − ℳ𝑛,𝑡 and ℳ𝑛 = 𝑀𝑛𝑛. Note that in eqn. (5.13), the functions 𝑓,𝑡
𝐽
 are as per 

eqn. (4.12) so that 𝐽 is summed from 0 to 2 (for the points on the boundary differentiation segment, cf., 

Fig 6). Once the conditions (5.12) and (5.13) have been applied, prescribing that any nodal values of 𝑢𝐼 

and/or ℳ𝑡
𝐼 𝐷⁄ = 𝑚𝑛𝑡

𝐼  are known can be enforced by appropriate algebraic rearrangement of the (global) 

system of equations. 
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 It should be noted that, while the resulting system of algebraic equations is banded, during their 

solution, row interchanges are required (which is not the case, e.g., in the finite element method). 

 

6. Numerical Example in Rectangular Coordinates 
 

Here the problem solved analytically in Sec. 2 is solved numerically with the cell method. Due to 

symmetry, only the upper right quadrant of Fig. 1 needs to be analyzed, so that the boundary conditions 

are 

on 𝑥 = 0 and 𝑦 = 0 ,     𝜙𝑡 = 𝑉̅𝑛 = 0  ;           on 𝑥 =
𝐿

2
 and 𝑦 =

𝐻

2
 ,     𝑢 = ℳ𝑡 = 0  .                          (6.1) 

The values of the constants used in the analysis are 

𝐿 = 360 in  ,      𝐻 = 240 in  ,      𝐹 = 10000 lb  ,      𝐸 = 3 × 107 psi  ,    𝜈 = 0.3  ,    ℎ = 1.0 in  .    (6.2) 
 

 
Figure 11. Computational grid used in the analysis. 

 

 The computational grid used is shown above in Fig. 11. It consists of a 36 × 24 array of 864 

points, and a 34 × 22 array of 748 (overlapping) differentiation cells. Also, due to the 𝑉̅𝑛 boundary 

conditions, on the face 𝑥 = 0 there are 22 (overlapping) boundary differentiation segments; and on 

𝑦 = 0, 34 (overlapping) boundary differentiation segments. 

 

In the graphs of Figs. 12 through 21 which follow, the solid curves are from the exact analytical 

solution, and the plotted points are from the numerical calculations. 

 

Figures 12 and 13 below show, respectively, the displacement 𝑢 and rotation component 𝜙𝑥 along 

the left boundary of the analyzed domain 𝑥 = 0. For all practical purposes, these two numerically 

calculated quantities basically coincide with the exact solution. 

 

The same thing can be said for the numerically calculated displacement 𝑢 and rotation vector 𝜙𝑖 

along the vertical line of grid points located at 𝑥 = 92.5714 in shown, respectively, in Figs. 14 and 15 

below. 
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Figure 12. The displacement 𝑢 at 𝑥 = 0. Figure 13. The rotation component 𝜙𝑥 at 𝑥 = 0. 

  
Figure 14. The displacement 𝑢 at 𝑥 = 92.5714 in. Figure 15. The rotation components 𝜙𝑥 (red) and 

                  𝜙𝑦 (blue) at 𝑥 = 92.5714 in. 
 

Figure 16 below shows the results for the moment components 𝑀𝑥𝑦 and 𝑀𝑦𝑥 at the left boundary 

of the analyzed domain 𝑥 = 0. Except for the slight error in 𝑀𝑥𝑦 at the top boundary 𝑦 = 𝐻 2⁄ , the 

numerical results are highly accurate. The reason for this slight error in 𝑀𝑥𝑦 is not clear to the author. 

Nevertheless, along this same boundary, the numerical results for the shear component 𝑉𝑦 is accurate 

everywhere, as is seen from Fig. 17 below. 
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Figure 16. Moment components 𝑀𝑥𝑦 (red) and 

                  𝑀𝑦𝑥 (blue) at 𝑥 = 0. 

Figure 17. Shear component 𝑉𝑦 at 𝑥 = 0. 

 

 Directly below, in Fig. 18, is shown the numerically calculated results for the moment 

component 𝑀𝑥𝑥 along the right boundary of the domain 𝑥 = 180 in. The numerical results are highly 

accurate. Figure 19 at below right shows the results for the shear component 𝑉𝑥 along the same boundary. 

Similarly to the results for 𝑀𝑥𝑦 in Fig. 16, there is a slight error in the calculated value of 𝑉𝑥 at the upper 

boundary of the domain. But, elsewhere, the numerical results are accurate. Again, the author does not 

know the reason for this slight error. 
 

  
Figure 18. Moment component 𝑀𝑥𝑥 

                  at 𝑥 = 180 in. 

Figure 19. Shear component 𝑉𝑥 at 𝑥 = 180 in. 
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Figure 20. Moment components 𝑀𝑥𝑦 (red),  

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) at 

                 𝑥 = 92.5714 in. 

Figure 21. Shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑥 = 92.5714 in. 

 

 Figures 20 and 21 directly above show the numerical results for the moment components 𝑀𝑖𝑗 and 

shear components 𝑉𝑖 along the vertical line of grid points located at 𝑥 = 92.5714 in. Again, all the 

numerical results are highly accurate, except for slight errors in 𝑀𝑥𝑦 and 𝑉𝑥 at the top boundary of the 

domain. 

 

Finally, at the upper right corner of the domain, the numerically calculated corner force is 

−748.528 lb, compared to the exact value −745.562 lb. This amounts to 0.398% relative error. 

 

For this problem, except for a few very slight errors in the stress resultants on the boundary, the 

cell method performs quite admirably. 

 

7. Numerical Example in Polar Coordinates 
 

In this section, the problem solved analytically in Sec. 3 is solved numerically with the cell 

method. The boundary conditions for this problem were stated previously in eqns. (3.1) through (3.3), and 

the constants used were given previously in eqn. (3.13). 

 

The computational grid used in the analysis is shown below in Fig. 22. The grid consists of a 25 

(radial) × 37 (circumferential) array of 925 points, and a 23 (radial) × 35 (circumferential) array of 805 

(overlapping) differentiation cells. Also, due to the prescribed values of 𝑉̅𝑛, the outer radius of the domain 

is spanned by 35 (overlapping) boundary differentiation segments. 

 

As in the previous section, in the graphs of Figs. 23 through 39 below, the solid curves are from 

the exact analytical solution; and the plotted points, from the numerical solution. 
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Figure 22. Computational grid used in the analysis. 

 

 

          At left, in Fig. 23, is shown the numerical 

results for the rotation component 𝜙𝑥 along the 

bottom boundary of the domain at 𝜃 = 0. As is 

evident, the magnitude of this numerically 

calculated rotation component is (very slightly) 

overestimated. 

 

          Below, in Figs. 24 and 25, respectively, are 

shown the results of the calculation for the 

displacement 𝑢 and rotation vector 𝜙𝑖 at the outer 

radius of the domain 𝑟 = 𝑏. Here, all the 

numerically calculated results basically coincide 

with the exact solution. 

Figure 23. Rotation component 𝜙𝑥 at 𝜃 = 0.  
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Figure 24. The displacement 𝑢 at 𝑟 = 𝑏. Figure 25. Rotation components 𝜙𝑥 (red) and 

                  𝜙𝑦 (blue) at 𝑟 = 𝑏. 
 

 As was the case for Figs. 24 and 25, the numerically calculated displacement 𝑢 and rotation 

vector 𝜙𝑖 along the radial line of grid points located at 𝜃 = 𝜋 8⁄ , shown, respectively, in Figs. 26 and 27 

below, are highly accurate. 
 

  
Figure 26. The displacement 𝑢 at 𝜃 = 𝜋 8⁄ . Figure 27. Rotation components 𝜙𝑥 (red) and 

                  𝜙𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 
 

 The same thing can be said for the displacement 𝑢 and rotation vector 𝜙𝑖 along the 

circumferential ring of grid points located at 𝑟 = 238.442 in, shown below, respectively, in Figs. 28 

and 29. 
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Figure 28. The displacement 𝑢 at 𝑟 = 238.442 in. Figure 29. Rotation components 𝜙𝑥 (red) and 

                  𝜙𝑦 (blue) at 𝑟 = 238.442 in. 
 

 Figure 30, at below left, shows the numerical results for the moment component 𝑀𝑥𝑥 along the 

bottom boundary of the domain located at 𝜃 = 0. As was the case for 𝜙𝑥 at 𝜃 = 0 in Fig. 23, here the 

numerically calculated magnitude of 𝑀𝑥𝑥 is (very slightly) overestimated. Along the same boundary, as 

shown at below right in Fig. 31, the numerically calculated values for the shear component 𝑉𝑦 are highly 

accurate, except for a slight error at the outer radius of the domain. The author does not know why this 

(slight) error occurs. 
 

  
Figure 30. Moment component 𝑀𝑥𝑥 at 𝜃 = 0. Figure 31. Shear component 𝑉𝑦 at 𝜃 = 0. 
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Figure 32. Moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) at 𝑟 = 𝑏. 

Figure 33. Shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑟 = 𝑏. 

 

 Figure 32, at above left, shows the numerically calculated values for the moment components 𝑀𝑖𝑗 

at the outer radius of the domain 𝑟 = 𝑏. All the numerical results are quite accurate, except for two data 

points, viz., 𝑀𝑥𝑦 at 𝜃 = 0, and 𝑀𝑦𝑥 at 𝜃 = 𝜋 2⁄ . These two errors appear to be due to how the boundary 

conditions were applied at these two points. At the corner (𝑟, 𝜃) = (𝑏, 0), the simply supported conditions 

𝑢 = ℳ𝑡 = 0 of the bottom face were applied; and at the corner (𝑟, 𝜃) = (𝑏, 𝜋 2⁄ ), the simply supported 

conditions of the left face were applied. The same kind of thing occurs in Fig. 33, at above right, 

concerning the shear vector 𝑉𝑖, where all the numerical results are accurate, except for the two data points 

at (𝑟, 𝜃) = (𝑏, 0) for 𝑉𝑥, and at (𝑟, 𝜃) = (𝑏, 𝜋 2⁄ ) for 𝑉𝑦. It would be worthwhile to look into if the 

calculational code could be modified to allow for specification of four boundary conditions (instead of 

just two) at the corner points, i.e., two boundary conditions for each adjoining face. 

 

 Figure 34 below shows the numerically calculated moment components 𝑀𝑖𝑗 along the inner 

radius of the domain at 𝑟 = 𝑎, which numerical values are highly accurate. Figure 35 below shows the 

results, also at the inner radius, for the shear vector 𝑉𝑖. Overall, the results for the numerically calculated 

shear components are acceptably accurate, although the magnitudes of these components are 

underestimated somewhat. 
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Figure 34. Moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) at 𝑟 = 𝑎. 

Figure 35. Shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑟 = 𝑎. 

 

 The results of the numerical calculations for the moment components 𝑀𝑖𝑗 and the shear vector 𝑉𝑖, 

along the radial line of grid points located at 𝜃 = 𝜋 8⁄ , are shown below, respectively, in Figs. 36 and 37. 

Here, all the numerical results are highly accurate. 
 

  
Figure 36. Moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) 

                 at 𝜃 = 𝜋 8⁄ . 

Figure 37. Shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 
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Figure 38. Moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) 

                 at 𝑟 = 238.442 in. 

Figure 39. Shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑟 = 238.442 in. 

 

 Figure 38, at above left, gives the numerical results for the moment tensor 𝑀𝑖𝑗 along the 

circumferential ring of grid points located at 𝑟 = 238.442 in. Here the behavior of the numerical solution 

is very similar to that at 𝑟 = 𝑏 in Fig. 32. In Fig. 39, at above right, is shown the results along the same 

ring of grid points for the shear vector 𝑉𝑖. Again, here the behavior is similar to that at 𝑟 = 𝑏 in Fig. 33. It 

is worth mentioning that, in the exact solution, the shear component 𝑉𝑥 at 𝜃 = 0 and 𝑉𝑦 at 𝜃 = 𝜋 2⁄  are 

zero, cf., the first of eqns. (3.7). As Fig. 39 shows, though, in the numerical solution these values are not 

zero, but are relatively small, i.e., ~4 lb in⁄ . 

 

Finally, the numerically calculated values of the corner forces at the lower right and upper left 

corners of the domain are, respectively, −3949.36 lb and 3949.34 lb. The exact values of the corner 

forces are ∓3935.94 lb, which amounts to 0.34% relative error. 

 

 Overall, except for some errors in the numerically calculated stress resultants at the boundaries, 

cf., Figs. 31, 32, 33, 38 and 39, for this problem, the cell method is quite accurate and reliable. 

 

8. Closing Remarks 
 

While the author is not aware of anything like the cell method, he thought he would try it out due 

to its simple and easy to understand idea, viz., just evaluate the governing partial differential equations at 

the computational grid points. In fact, the cell method is of comparable (if not better) accuracy to both the 

finite element method and the boundary element method. What is quite astounding, though, is that 

acceptably accurate solutions to a fourth-order partial differential equation can be obtained by using only 

quadratic interpolations. Also, the cell method requires that no numerical integrations be performed, 

unlike in the finite element and boundary element methods. Another point of interest is that, in the finite 

element method, a 𝐶1 finite element must be used (e.g., the standard fifth-order 𝐶1 triangle element), 

while in the cell method, any notion of 𝐶1 continuity does not even arise. 

 


