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1. Governing Equations 
 

In two dimensions, Hooke’s Law is 

𝜎𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙𝜀𝑘𝑙   ,                                                                                                                                    (1.1) 

where 𝜎𝑖𝑗 are the stress components, 𝜀𝑖𝑗 = (1 2⁄ )(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) are the strain components, 𝑢𝑖 is the 

displacement vector, and where the comma denotes differentiation with respect to the (rectangular) 

coordinates. The tensor 𝐿𝑖𝑗𝑘𝑙 is given by 

𝐿𝑖𝑗𝑘𝑙 =
𝐸

1 + 𝜈
(𝐼𝑖𝑗𝑘𝑙 +

𝜈∗

1 − 2𝜈∗
𝛿𝑖𝑗𝛿𝑘𝑙)  ,          𝐼𝑖𝑗𝑘𝑙 =

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙)  ,                         (1.2) 

where 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, and 𝛿𝑖𝑗 are the components of the two-dimensional 

identity matrix (i.e., the Kronecker delta). Also, for plane strain, 

𝜈∗ = 𝜈  ,          𝜀𝑧𝑧 = 0  ,          𝜎𝑧𝑧 = 𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)  ,                                                                 (1.3) 

and for plane stress, 

𝜈∗ =
𝜈

1 + 𝜈
  ,          𝜎𝑧𝑧 = 0  ,          𝜀𝑧𝑧 = −

𝜈

1 − 𝜈
(𝜀𝑥𝑥 + 𝜀𝑦𝑦)  .                                            (1.4) 

Written out, eqns. (1.1) and (1.2) are 

𝜎𝑥𝑥 =
𝐸

(1 + 𝜈)(1 − 2𝜈∗)
[ (1 − 𝜈∗)𝜀𝑥𝑥 + 𝜈∗𝜀𝑦𝑦 ]  ,                                                                           

𝜎𝑦𝑦 =
𝐸

(1 + 𝜈)(1 − 2𝜈∗)
[ (1 − 𝜈∗)𝜀𝑦𝑦 + 𝜈∗𝜀𝑥𝑥 ]  ,                                                                (1.5) 

𝜎𝑥𝑦 =
𝐸

(1 + 𝜈)
 𝜀𝑥𝑦  ,                                                                                                                                 

or inversely, 

𝜀𝑥𝑥 =
(1 + 𝜈)

𝐸
[ (1 − 𝜈∗)𝜎𝑥𝑥 − 𝜈∗𝜎𝑦𝑦 ]  ,                                                                                            

𝜀𝑦𝑦 =
(1 + 𝜈)

𝐸
[ (1 − 𝜈∗)𝜎𝑦𝑦 − 𝜈∗𝜎𝑥𝑥 ]  ,                                                                                (1.6) 

𝜀𝑥𝑦 =
(1 + 𝜈)

𝐸
 𝜎𝑥𝑦  .                                                                                                                               

Now, the equilibrium equations are 

𝜎𝑖𝑗,𝑖 = 0  or  𝐿𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑖 = 0  ,                                                                                                         (1.7) 

where the second form follows from the symmetries of 𝐿𝑖𝑗𝑘𝑙. Finally, admissible boundary conditions are 

to prescribe two of the four quantities 𝑢𝑖 and 𝑇𝑗 = 𝑛𝑖𝜎𝑖𝑗 at each point on the boundary of the domain, 

where 𝑇𝑗 is the traction vector and 𝑛𝑖 is the outward-pointing unit normal vector on the boundary. 

 

 In polar coordinates, the strain-displacement relations are 

𝜀𝑟𝑟 = 𝑢𝑟,𝑟  ,          𝜀𝜃𝜃 =
1

𝑟
𝑢𝜃,𝜃 +

1

𝑟
𝑢𝑟  ,          𝜀𝑟𝜃 =

1

2
(
1

𝑟
𝑢𝑟,𝜃 + 𝑢𝜃,𝑟 −

1

𝑟
𝑢𝜃)  ,              (1.8) 

and the equilibrium equations are 



The Cell Method for Linear Elasticity 
 

3 
 

𝜎𝑟𝑟,𝑟 +
1

𝑟
𝜎𝑟𝜃,𝜃 +

1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 0  ,          𝜎𝑟𝜃,𝑟 +

1

𝑟
𝜎𝜃𝜃,𝜃 +

2

𝑟
𝜎𝑟𝜃 = 0  .                                        (1.9) 

Also, in polar coordinates, Hooke’s Law is given by eqns. (1.1) through (1.6) above with 𝑟 replacing 𝑥 

and 𝜃 replacing 𝑦. 

 

2. Example in Rectangular Coordinates 
 

Consider the stress field 

𝜎𝑥𝑥 =
12𝑉

𝐻3
 (𝐿 − 𝑥)𝑦 ,          𝜎𝑦𝑦 = 0 ,          𝜎𝑥𝑦 =

3𝑉

2𝐻3
 (4𝑦2 − 𝐻2) ,                                               (2.1) 

which spans the rectangular domain (a cantilever beam) of Fig. 1 below. Note that 

∫ 𝜎𝑥𝑦(𝐿, 𝑦)d𝑦

𝐻 2⁄

−𝐻 2⁄

= −𝑉 ,          ∫ 𝑦𝜎𝑥𝑥(0, 𝑦)d𝑦

𝐻 2⁄

−𝐻 2⁄

= 𝑉𝐿 ,                                                                   (2.2) 

so that 𝑉 > 0 is the net shear force applied to the ends of the beam, and a moment 𝑉𝐿 is applied to the left 

end of the beam. Also, eqns. (2.1) satisfy the equilibrium eqns. (1.7) identically. With eqns. (2.1) and 

 

Hooke’s Law (1.6), the strain 

components are 

𝜀𝑥𝑥 =
12𝑉𝐶(1 − 𝜈∗)

𝐻3
 (𝐿 − 𝑥)𝑦 ,           

𝜀𝑦𝑦 = −
12𝑉𝐶𝜈∗

𝐻3
 (𝐿 − 𝑥)𝑦 ,        (2.3) 

𝜀𝑥𝑦 =
3𝑉𝐶

2𝐻2
 (4𝑦2 − 𝐻2) ,                       

where the notation 𝐶 = (1 + 𝜈) 𝐸⁄  has 

been used. Finally, integrating the 

Figure 1. Domain of a cantilever beam.  

 

strains (2.3), via 𝜀𝑖𝑗 = (1 2⁄ )(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), such that 𝑢𝑥(0,0) = 𝑢𝑦(0,0) = 0 and 𝑢𝑥(0,𝐻 2⁄ ) = 0, one 

obtains the displacement field 

𝑢𝑥 =
𝑉𝐶

2𝐻3
 [ 12(1 − 𝜈∗)(2𝐿𝑥 − 𝑥2)𝑦 + 4(2 − 𝜈∗)𝑦3 − (2 − 𝜈∗)𝐻2𝑦 ] ,                                                 

𝑢𝑦 = −
𝑉𝐶

2𝐻3
 [ 12𝜈∗(𝐿 − 𝑥)𝑦2 + 4(1 − 𝜈∗)(3𝐿𝑥2 − 𝑥3) + (4 + 𝜈∗)𝐻2𝑥 ] .                                (2.4) 

Consistent boundary conditions are then 

on 𝑥 = 0 ,     
𝑇𝑥 = −

12𝑉𝐿

𝐻3
 𝑦                  

𝑇𝑦 = −
3𝑉

2𝐻3
 (4𝑦2 − 𝐻2)

          on 𝑥 = 𝐿 ,     
𝑇𝑥 = 0                          

𝑇𝑦 =
3𝑉

2𝐻3
 (4𝑦2 − 𝐻2)

                               

and on 𝑦 = ±
𝐻

2
 ,     

𝑇𝑥 = 0

𝑇𝑦 = 0

                                                                                                                 (2.5) 
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along with the conditions 𝑢𝑥(0,0) = 𝑢𝑦(0,0) = 0 and 𝑢𝑥(0,𝐻 2⁄ ) = 0. 

 

3. Example in Polar Coordinates 
 

 

          In polar coordinates, the quarter-annular 

domain shown at left in Fig. 2 is subjected to the 

boundary conditions 

𝑢𝑟(𝑎, 𝜃) = 𝑢𝜃(𝑎, 𝜃) = 0 ,                                       

𝑇𝑟(𝑏, 𝜃) =
2𝐹

𝑏
cos 4𝜃 ,          𝑇𝜃(𝑏, 𝜃) = 0 ,        

𝑇𝑟(𝑟, 0) = 0 ,          𝑢𝜃(𝑟, 0) = 0 ,              (3.1) 

𝑇𝑟(𝑟, 𝜋 2⁄ ) = 0 ,          𝑢𝜃(𝑟, 𝜋 2⁄ ) = 0 ,              

Figure 2. Quarter-annular domain. where 

 

𝐹 = ∫ 𝑇𝑟(𝑏, 𝜃)

𝜋 8⁄

0

𝑏d𝜃 .                                                                                                                              (3.2) 

The boundary conditions (3.1) may be satisfied with a displacement field of the form 

𝑢𝑟 = 𝑓(𝑟) cos 4𝜃 ,          𝑢𝜃 = 𝑔(𝑟) sin4𝜃 .                                                                                       (3.3) 

Substituting eqns. (3.3) into the strain-displacement relations (1.8), one obtains the strains 

𝜀𝑟𝑟 = 𝑓′ cos4𝜃 ,         𝜀𝜃𝜃 =
1

𝑟
( 𝑓 + 4𝑔) cos 4𝜃 ,         𝜀𝑟𝜃 =

1

2
( 𝑔′ −

1

𝑟
𝑔 −

4

𝑟
𝑓 ) sin 4𝜃 ,   (3.4) 

and via Hooke’s Law (1.5) with 𝐶 = (1 + 𝜈) 𝐸⁄ , eqns. (3.4) give the stresses 

𝜎𝑟𝑟 =
1

𝐶(1 − 2𝜈∗)
 [ (1 − 𝜈∗)𝑓′ +

𝜈∗

𝑟
𝑓 +

4𝜈∗

𝑟
𝑔 ] cos 4𝜃 ,                                                                        

𝜎𝜃𝜃 =
1

𝐶(1 − 2𝜈∗)
 [ 𝜈∗𝑓′ +

(1 − 𝜈∗)

𝑟
𝑓 +

4(1 − 𝜈∗)

𝑟
𝑔 ] cos 4𝜃 ,                                                 (3.5) 

𝜎𝑟𝜃 =
1

2𝐶
 ( 𝑔′ −

1

𝑟
𝑔 −

4

𝑟
𝑓 ) sin 4𝜃 .                                                                                                              

Note that eqns. (3.3) and (3.5) satisfy the boundary conditions at 𝜃 = 0 and 𝜃 = 𝜋 2⁄  identically. Now, 

substitution of the stresses (3.5) into the equilibrium eqns. (1.9) yields the coupled pair of ordinary 

differential equations 

(1 − 𝜈∗)𝑓′′ +
(1 − 𝜈∗)

𝑟
𝑓′ −

(9 − 17𝜈∗)

𝑟2
𝑓 +

2

𝑟
𝑔′ −

2(3 − 4𝜈∗)

𝑟2
𝑔 = 0 ,                                             

(1 − 2𝜈∗)𝑔′′ +
(1 − 2𝜈∗)

𝑟
𝑔′ −

(33 − 34𝜈∗)

𝑟2
𝑔 −

4

𝑟
𝑓′ −

4(3 − 4𝜈∗)

𝑟2
𝑓 = 0 .                           (3.6) 

By assuming functions of the form 

𝑓 = 𝑘𝑟𝑝 ,          𝑔 = 𝑙𝑟𝑝 ,                                                                                                                       (3.7) 

eqns. (3.6) become 
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[ 
[ (1 − 𝜈∗)𝑝2 − (9 − 17𝜈∗) ] 2[ 𝑝 − (3 − 4𝜈∗) ]

−4[ 𝑝 + (3 − 4𝜈∗) ] [ (1 − 2𝜈∗)𝑝 − (33 − 34𝜈∗) ]
 ] [ 

𝑘
𝑙
 ] = [ 

0
0
 ] ,                      (3.8) 

which has nontrivial solutions if the determinant of coefficients is zero, viz., 

𝑝4 − 34𝑝2 + 225 = 0 .                                                                                                                        (3.9) 

Thus, 

𝑝 = −5 ,−3 , 3 , 5 .                                                                                                                             (3.10) 

Next, using the four null vectors of eqns. (3.8) as generated by the powers (3.10), one obtains the relations 

between the eight constants 𝑘𝑖 and 𝑙𝑖 

𝑝 = −5  ⇒   𝑙1 = 𝑘1 ,          𝑝 = −3  ⇒   𝑙2 =
2𝜈∗

3 − 2𝜈∗
𝑘2 ,                                                                            

𝑝 = 3  ⇒   𝑙3 = −𝑘3 ,          𝑝 = 5  ⇒   𝑙4 = −
2(2 − 𝜈∗)

1 + 2𝜈∗
𝑘4 .                                                          (3.11) 

Finally, the functions 𝑓 and 𝑔 are then 

𝑓 =
𝑘1

𝑟5
+

𝑘2

𝑟3
+ 𝑘3𝑟

3 + 𝑘4𝑟
5 ,          𝑔 =

𝑙1
𝑟5

+
𝑙2
𝑟3

+ 𝑙3𝑟
3 + 𝑙4𝑟

5 .                                                      (3.12) 

 

 Turning attention to the boundary conditions at 𝑟 = 𝑎 and 𝑟 = 𝑏, eqns. (3.3), (3.5), (3.11) 

and (3.12) give the system 

[
 
 
 
 

 

1 𝑎5⁄ 1 𝑎3⁄

1 𝑎5⁄  2𝜈∗ [ (3 − 2𝜈∗)𝑎3 ]⁄
𝑎3 𝑎5

−𝑎3 −2(2 − 𝜈∗)𝑎5 (1 + 2𝜈∗)⁄

−5 𝑏5⁄ −9 [ (3 − 2𝜈∗)𝑏3 ]⁄

−5 𝑏5⁄ −6 [ (3 − 2𝜈∗)𝑏3 ]⁄

3𝑏3            5𝑏5 (1 + 2𝜈∗)⁄

−3𝑏3          −10𝑏5 (1 + 2𝜈∗)⁄

 

]
 
 
 
 

[ 

𝑘1

𝑘2

𝑘3

𝑘4

 ] = [ 

0
0

2𝐹𝐶
0

 ]              (3.13) 

to solve for the constants 𝑘𝑖. The first of eqns. (3.13) is from 𝑢𝑟(𝑎, 𝜃) = 0; the second is from 

𝑢𝜃(𝑎, 𝜃) = 0; the third, from 𝑇𝑟(𝑏, 𝜃) = 2𝐹 cos 4𝜃 𝑏⁄  ; and the fourth, 𝑇𝜃(𝑏, 𝜃) = 0. Instead of solving 

eqns. (3.13) algebraically, they were solved numerically using the constants 

𝐸 = 3 × 107 psi ,     𝜈 = 0.3 ,     𝑎 = 36 in ,     𝑏 = 72 in ,     𝐹 = 10,000 lb                                 (3.14) 

for plane stress. The results are 

𝑘1 =     4.468 854 986 101 9630 × 103

𝑘2 = −6.240 733 337 857 3010 × 100

𝑙1 =    4.468 854 986 101 9630 × 103

𝑙2 = −1.134 678 788 701 3274 × 100

  𝑘3 =     1.437 736 140 089 1819 × 10−9

     𝑘4 = −1.194 905 134 758 0960 × 10−13

   𝑙3 = −1.437 736 140 089 1819 × 10−9

     𝑙4 =   2.892 928 220 993 2855 × 10−13

 ,     (3.15) 

which constants solve the problem at hand. 

 

4. The Cell Method 
 

 What the author calls “The Cell Method” is not a finite element method, nor is it a finite 

difference method, but perhaps a hybrid of the two. The author just tried this method because it makes 

sense, and is simple in its idea. Specifically, it is based on the differentiation cell shown below in Fig. 3. 

The cell spans the normalized domain 𝜉𝑖 ∈ (−1,1). Now, with the aid of the quadratic functions 

𝑓0(𝑠) =
1

2
(−𝑠 + 𝑠2)  ,          𝑓1(𝑠) = 1 − 𝑠2  ,      𝑓2(𝑠) =

1

2
(𝑠 + 𝑠2)  ,                          (4.1) 
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one may construct the nine interpolation functions 𝑆𝐼 via 

 

 
Figure 3. The differentiation cell in 

                normalized 𝛏–space. 

Figure 4. A 4 × 4 computational grid of points containing 

               four differentiation cells. 

 

𝑆0 = 𝑓0(𝜉0)𝑓
0(𝜉1) 𝑆1 = 𝑓1(𝜉0)𝑓

0(𝜉1) 𝑆2 = 𝑓2(𝜉0)𝑓
0(𝜉1)

𝑆3 = 𝑓0(𝜉0)𝑓
1(𝜉1) 𝑆4 = 𝑓1(𝜉0)𝑓

1(𝜉1) 𝑆5 = 𝑓2(𝜉0)𝑓
1(𝜉1)

𝑆6 = 𝑓0(𝜉0)𝑓
2(𝜉1) 𝑆7 = 𝑓1(𝜉0)𝑓

2(𝜉1) 𝑆8 = 𝑓2(𝜉0)𝑓
2(𝜉1)

  ,                                     (4.2) 

which functions actually are the “shape” functions of the bi-quadratic LaGrange finite element. 

 

 The mapping of the differentiation cell to physical 𝐱–space is achieved via 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼  ,                                                                                                                                        (4.3) 

where 𝑥𝑖
𝐼 are the coordinates of the cell’s points. The differentials of eqn. (4.3) are then 

d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼  ,          𝐴𝑖𝛼 =
𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝑖
𝐼  ,          𝐴𝑖𝛼,𝛽 = 𝑆,𝛼𝛽

𝐼 𝑥𝑖
𝐼  ,                                        (4.4) 

and 

d𝜉𝛼 = 𝐴𝛼𝑖
−1d𝑥𝑖  ,          𝐴𝛼𝑖

−1 =
𝜕𝜉𝛼

𝜕𝑥𝑖
  .                                                                                             (4.5) 

Now, with the derivative 

𝜕𝐴𝛾𝑗
−1

𝜕𝜉𝛽
= −𝐴𝛾𝑖

−1𝐴𝑖𝛼,𝛽𝐴𝛼𝑗
−1  ,                                                                                                             (4.6) 

one finds that the physical gradients of the interpolation functions are, which are obtained via the Chain 

Rule, 

𝑆,𝑗
𝐼 = 𝑆,𝛼

𝐼 𝐴𝛼𝑗
−1  ,          𝑆,𝑗𝑘

𝐼 = (𝑆,𝛾𝛽
𝐼 − 𝑆,𝛼

𝐼 𝐴𝑖𝛾,𝛽𝐴𝛼𝑖
−1)𝐴𝛽𝑘

−1𝐴𝛾𝑗
−1  .                                                 (4.7) 

Next, interpolate the displacement vector 𝑢𝑖 through the cell with the functions 𝑆𝐼, viz., 

𝑢𝑖 = 𝑆𝐼𝑢𝑖
𝐼  ,          𝑢𝑖,𝑗 = 𝑆,𝑗

𝐼 𝑢𝑖
𝐼  ,          𝑢𝑖,𝑗𝑘 = 𝑆,𝑗𝑘

𝐼 𝑢𝑖
𝐼  ,                                                            (4.8) 

where 𝑢𝑖
𝐼 are the displacements at the cell’s points. From Hooke’s Law (1.1), 𝜎𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙𝑢𝑘,𝑙, which 

follows from the symmetries of 𝐿𝑖𝑗𝑘𝑙. Into this, substitute the second of eqns. (4.8) to obtain the stresses 

within the cell 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘
𝐼 𝑢𝑘

𝐼   ,          𝐷𝑖𝑗𝑘
𝐼 = 𝐿𝑖𝑗𝑘𝑙𝑆,𝑙

𝐼   .                                                                                       (4.9) 

In particular, also via eqns. (4.8), the equilibrium equation (the second of eqns. 1.7) and the traction 

vector 𝑇𝑗 = 𝑛𝑖𝜎𝑖𝑗 are in the cell 
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𝐸𝑗𝑘
𝐼 𝑢𝑘

𝐼 = 0  ,          𝐹𝑗𝑘
𝐼 𝑢𝑘

𝐼 = 𝑇𝑗  ,          𝐸𝑗𝑘
𝐼 = 𝐿𝑖𝑗𝑘𝑙𝑆,𝑙𝑖

𝐼   ,          𝐹𝑗𝑘
𝐼 = 𝑛𝑖𝐿𝑖𝑗𝑘𝑙𝑆,𝑙

𝐼   .              (4.10) 

 

Turning attention to Fig. 4 above, the computational procedure of the cell method is as follows. 

Figure 4 shows four copies of the same 4 × 4 computational grid of points. In each copy, in blue and red, 

are shown the four differentiation cells. Note that the cells overlap. First, at each of the four internal (red) 

points of the grid, two algebraic equations are constructed by evaluating the equilibrium equations at 

point 4 of each cell (via the operator in the first of eqns. 4.10). Two algebraic equations for each of the 

remaining 12 points are then supplied by the boundary conditions, by either prescribing 𝑢𝑖 or the traction 

vector 𝑇𝑗 (via the operator in the second of eqns. 4.10). Note that the boundary conditions are applied at 

either the points 1, 3, 5 or 7 of the cell (unless the boundary point is on a corner, for which the boundary 

conditions are applied at either the points 0, 2, 6 or 8 of the cell). In any case, a 32 × 32 system of 

equations has been constructed, which system may be solved for the 32 nodal displacements. 

 

5. Numerical Example in Rectangular Coordinates 
 

Here the problem solved analytically in Sec. 2 is solved numerically. The values of the constants 

used in the analysis are 

𝐿 = 10 in  ,           𝐻 = 5 in  ,          𝐸 = 3.0 × 107 psi  ,          𝜈 = 0.3  ,          𝑉 = 10 000 lb in⁄     (5.1) 

and plane stress is assumed. The computational grid used in the analysis is shown below in Fig. 5. It 

consists of a 37 × 25 array of 925 points, and a 35 × 23 array of 805 overlapping differentiation cells. 
 

 
Figure 5. Computational grid used in the analysis. 

 

 In the graphs in Figs. 6 through 11 below, the solid curves represent the exact solution; and the 

plotted points, the calculated numerical solution. 

 

 The displacement components along the bottom surface of the beam at 𝑦 = −𝐻 2⁄  are shown in 

Fig. 6 below. As is seen, the numerical solution is quite accurate. 

 

 Figure 7 below shows the displacement components along the left face of the beam at 𝑥 = 0. 

Here, the numerically calculated values of 𝑢𝑥 are somewhat inaccurate. Nevertheless, the magnitudes of 

the displacements in Fig. 7 are 100 times smaller than the those in Fig. 6. Thus, the absolute error in the 

calculated values is not that bad. On the other hand, the numerically calculated values of 𝑢𝑦 are quite 

accurate (except for a minor error at 𝑦 = 𝐻 2⁄ ). 
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Figure 6. Displacement components 𝑢𝑥 (red) and 

                𝑢𝑦 (blue) at 𝑦 = −𝐻 2⁄ . 

Figure 7. Displacement components 𝑢𝑥 (red) and 

                𝑢𝑦 (blue) at 𝑥 = 0. 

 

 Figure 8 below shows the displacement components along the right face of the beam at 𝑥 = 𝐿. As 

is evident, these numerical results are quite accurate. 

 

 The stress components along the left face of the beam at 𝑥 = 0 are shown below in Fig. 9. As 

before, except for the slight error in 𝜎𝑥𝑥 at 𝑦 = 𝐻 2⁄ , the numerical results are quite accurate. 

 

  
Figure 8. Displacement components 𝑢𝑥 (red) and 

                𝑢𝑦 (blue) at 𝑥 = 𝐿. 

Figure 9. Stress components 𝜎𝑥𝑥 (red) and 

                𝜎𝑥𝑦 (blue) at 𝑥 = 0. 

 

Figure 10 below shows the numerically calculated stress component 𝜎𝑥𝑦 along the right face of 

the beam at 𝑥 = 𝐿, which numerical results are very accurate. 
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Finally, the stress components 𝜎𝑥𝑥 and 𝜎𝑥𝑦 along the vertical line of grid points located at 

𝑥 = 3𝐿 4⁄  is shown at below right in Fig. 11. As was the case with Fig. 10, here also the numerical results 

are highly accurate. 

 

  
Figure 10. Stress component 𝜎𝑥𝑦 at 𝑥 = 𝐿. Figure 11. Stress components 𝜎𝑥𝑥 (red) and 

                𝜎𝑥𝑦 (blue) at 𝑥 = 3𝐿 4⁄ . 

 

 Overall, for this problem, the performance of the cell method is quite acceptable. 

 

6. Numerical Example in Polar Coordinates 
 

The problem solved analytically in Sec. 3 above is analyzed here numerically. The constants used 

in the analysis were given previously in eqn. (3.14). The computational grid used in the analysis is shown 

below in Fig. 12. It consists of a 25 (radial) × 37 (circumferential) array of 925 points, and a 23 (radial) × 

35 (circumferential) array of 805 overlapping differentiation cells. 

 

Figure 13 below shows the numerical results for the displacement component 𝑢𝑥 along the 

bottom boundary of the domain at 𝜃 = 0. As the figure shows, the calculations are quite accurate. 

 

The displacement components along the outer circumference of the domain at 𝑟 = 𝑏 are shown 

below in Fig. 14. Once again, the numerical results are highly accurate. 
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Figure 12. Computational grid used in the analysis. 

 

  
Figure 13. Displacement component 𝑢𝑥 at 𝜃 = 0. Figure 14. Displacement components 𝑢𝑥 (red) and 

                 𝑢𝑦 (blue) at 𝑟 = 𝑏. 

 

 The numerically calculated displacement components along the radial line of grid points located 

at 𝜃 = 𝜋 8⁄  is shown below in Fig. 15. As is seen, the numerical results are acceptably accurate. 

 

 Figure 16 below shows the results of the calculation for the stress components 𝜎𝑥𝑥 and 𝜎𝑦𝑦 along 

the bottom surface of the domain at 𝜃 = 0. Here the numerical results basically correspond to the exact 

analytical solution. 
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Figure 15. Displacement components 𝑢𝑥 (red) and 

                 𝑢𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 

Figure 16. Stress components 𝜎𝑥𝑥 (red) and 

                 𝜎𝑦𝑦 (blue) at 𝜃 = 0. 

 

 The stress components along the outer circumference of the domain at 𝑟 = 𝑏 are given at below 

left in Fig. 17. As was the case for Fig. 16, here the numerical calculations basically reproduce the exact 

solution. 

 

 Finally, Fig. 18 at below right shows the numerically calculated stress components along the 

radial line of grid point located at 𝜃 = 𝜋 8⁄ . Here, the numerical results are quite accurate. One notes that, 

at 𝜃 = 𝜋 8⁄ , 𝜎𝑥𝑦 = 𝜎𝑦𝑦. 
 

  
Figure 17. Stress components 𝜎𝑥𝑥 (red), 

                 𝜎𝑦𝑦 (blue) and 𝜎𝑥𝑦 (purple) at 𝑟 = 𝑏. 

Figure 18. Stress components 𝜎𝑥𝑥 (red) and 

                 𝜎𝑦𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 

 

 Overall, for this problem, the performance of the cell method is highly reliable. 
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7. Closing Remarks 
 

While the author has not seen this method before, as mentioned above in Sec. 4, he tried it out 

just because it makes sense, and because the idea behind it is quite simple. It is perhaps easier to 

implement than the finite element method, because no integrations are required. In any case, the above 

considerations show that, for two-dimensional linear elasticity, the cell method is quite effective and 

reliable. 

 


