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1. Governing Equation 
 

Poisson’s equation is the simplest second-order partial differential equation, viz., 

𝑇∇2𝑢 + 𝑝 = 0 ,                                                                                                                                (1.1) 

where 𝑢 is the transverse displacement of a (e.g., soap) film, 𝑝 is the upward pressure distribution applied 

to the film, and 𝑇 is the surface tension of the film. In rectangular coordinates, the Laplacian is 

∇2𝑢 = 𝑢,𝑖𝑖 = 𝑢,𝑥𝑥 + 𝑢,𝑦𝑦  ,                                                                                                           (1.2) 

where the comma denotes differentiation with respect to the spatial coordinates. Also, admissible 

boundary conditions for eqn. (1.1) are either the displacement 𝑢 or the outward normal derivative 𝑢,𝑛 are 

prescribed at each point of the boundary of the domain. 

 

 In polar coordinates we have the Laplacian 

∇2𝑢 = 𝑢,𝑟𝑟 +
1

𝑟
𝑢,𝑟 +

1

𝑟2
𝑢,𝜃𝜃                                                                                                       (1.3) 

and the components of the displacement gradient 

(𝛁𝑢)𝑟 = 𝑢,𝑟  ,          (𝛁𝑢)𝜃 =
1

𝑟
𝑢,𝜃  .                                                                                           (1.4) 

 

2. Example in Rectangular Coordinates 
 

 

          At left, in Fig.1, is shown an 𝐿 × 𝐻 rectangular 

domain subjected to the pressure distribution 

𝑝 = 𝑝0 cos ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 )  ,                      (2.1) 

where 𝑝0 is the magnitude of the pressure at the origin. Note 

that eqn. (2.1) is a “bubble” function, i.e., the pressure is 

zero on the boundary. The boundary conditions are that 𝑢 is 

zero on the boundary. Equation (1.1) may be solved with a 

displacement of the form 

Figure 1. Rectangular domain as 

               described in the text. 
𝑢 = 𝑘 cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 )  .                      (2.2) 

 

Note that eqn. (2.2) satisfies the boundary conditions. Notwithstanding, substituting eqns. (2.1) and (2.2) 

into the governing equation (1.1) yields the value of the constant 𝑘, viz., 

𝑘 =
𝑝0

𝜋2𝑇
( 

𝐿2𝐻2

𝐿2 + 𝐻2
 )  .                                                                                                                  (2.3) 

Also, the displacement gradients are 

𝑢,𝑥 = −𝑘
𝜋

𝐿
sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 )  ,          𝑢,𝑦 = −𝑘

𝜋

𝐻
cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 )  .                   (2.4) 

  



The Cell Method for Poisson’s Equation 
 

3 
 

3. Example in Polar Coordinates 
 

 

          Figure 2 at left shows a quarter-annular domain subjected to a 

pressure distribution 

𝑝 =
2𝐹

𝑏2 − 𝑎2
 cos 𝜃 ,                                                             (3.1) 

where 𝐹 is the net force acting on the domain, i.e., 𝐹 = ∫ 𝑝d𝐴
0

𝐴
. From 

eqns. (1.1), (1.3) and (3.1), the governing equation is 

𝑢,𝑟𝑟 +
1

𝑟
𝑢,𝑟 +

1

𝑟2
𝑢,𝜃𝜃 = −

2𝐹

𝑇(𝑏2 − 𝑎2)
 cos 𝜃  .             (3.2) 

Figure 2. Quarter-annular 

               domain as described 

               in the text. 

 

The domain is subjected to the boundary conditions 𝑢,𝑛 = 0 on 𝜃 = 0 

with 𝑢 = 0 on the other three boundaries. Equation (3.2) is solved 
 

with a displacement of the form 

𝑢 = 𝑓(𝑟) cos 𝜃   ,                                                                                                                           (3.3) 

which when substituted into eqn. (3.2) yields 

𝑓′′ +
1

𝑟
𝑓′ −

1

𝑟2
𝑓 = −

2𝐹

𝑇(𝑏2 − 𝑎2)
  .                                                                                        (3.4) 

The general solution of eqn. (3.4) is 

𝑓 = 𝑘1𝑟 +
𝑘2

𝑟
−

2𝐹

3𝑇(𝑏2 − 𝑎2)
𝑟2  ,          𝑓′ = 𝑘1 −

𝑘2

𝑟2
−

4𝐹

3𝑇(𝑏2 − 𝑎2)
𝑟 .                      (3.5) 

Consistent with eqn. (3.3), the components of the displacement gradient are 

(𝛁𝑢)𝑟 = 𝑓′(𝑟) cos 𝜃   ,          (𝛁𝑢)𝜃 = −
1

𝑟
𝑓(𝑟) sin 𝜃   .                                                       (3.6) 

 

 Looking at eqn. (3.3) and the second of eqns. (3.6), the boundary conditions at 𝜃 = 0 and 

𝜃 = 𝜋 2⁄  are satisfied identically. Then, satisfying the boundary conditions at 𝑟 = 𝑎 and 𝑟 = 𝑏 gives the 

values of the two constants 

𝑘1 =
2𝐹(𝑏3 − 𝑎3)

3𝑇(𝑏2 − 𝑎2)2
  ,          𝑘2 = −

2𝐹𝑎2𝑏2(𝑏 − 𝑎)

3𝑇(𝑏2 − 𝑎2)2
  ,                                                        (3.7) 

which two values solve the problem at hand. 

 

4. The Cell Method 
 

 What the author calls “The Cell Method” is not a finite element method, nor is it a finite 

difference method, but perhaps a hybrid of the two. The author just tried this method because it makes 

sense, and is simple in its idea. Specifically, it is based on the differentiation cell shown below in Fig. 3. 

The cell spans the normalized domain 𝜉𝑖 ∈ (−1,1). Now, with the aid of the quadratic functions 

𝑓0(𝑠) =
1

2
(−𝑠 + 𝑠2)  ,          𝑓1(𝑠) = 1 − 𝑠2  ,      𝑓2(𝑠) =

1

2
(𝑠 + 𝑠2)  ,                          (4.1) 

one may construct the nine interpolation functions 𝑆𝐼 via 
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Figure 3. The differentiation cell in 

                normalized 𝛏–space. 

Figure 4. A 4 × 4 computational grid of points containing 

               four differentiation cells. 

 

𝑆0 = 𝑓0(𝜉0)𝑓0(𝜉1) 𝑆1 = 𝑓1(𝜉0)𝑓0(𝜉1) 𝑆2 = 𝑓2(𝜉0)𝑓0(𝜉1)

𝑆3 = 𝑓0(𝜉0)𝑓1(𝜉1) 𝑆4 = 𝑓1(𝜉0)𝑓1(𝜉1) 𝑆5 = 𝑓2(𝜉0)𝑓1(𝜉1)

𝑆6 = 𝑓0(𝜉0)𝑓2(𝜉1) 𝑆7 = 𝑓1(𝜉0)𝑓2(𝜉1) 𝑆8 = 𝑓2(𝜉0)𝑓2(𝜉1)

  ,                                     (4.2) 

which functions actually are the “shape” functions of the bi-quadratic LaGrange finite element. 

 

 The mapping of the differentiation cell to physical 𝐱–space is achieved via 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼  ,                                                                                                                                        (4.3) 

where 𝑥𝑖
𝐼 are the coordinates of the cell’s points. The differentials of eqn. (4.3) are then 

d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼  ,          𝐴𝑖𝛼 =
𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝑖
𝐼  ,          𝐴𝑖𝛼,𝛽 = 𝑆,𝛼𝛽

𝐼 𝑥𝑖
𝐼  ,                                        (4.4) 

and 

d𝜉𝛼 = 𝐴𝛼𝑖
−1d𝑥𝑖  ,          𝐴𝛼𝑖

−1 =
𝜕𝜉𝛼

𝜕𝑥𝑖
  .                                                                                             (4.5) 

Now, with the derivative 

𝜕𝐴𝛾𝑗
−1

𝜕𝜉𝛽
= −𝐴𝛾𝑖

−1𝐴𝑖𝛼,𝛽𝐴𝛼𝑗
−1  ,                                                                                                             (4.6) 

one finds that the physical gradients of the interpolation functions are, which are obtained via the Chain 

Rule, 

𝑆,𝑗
𝐼 = 𝑆,𝛼

𝐼 𝐴𝛼𝑗
−1  ,          𝑆,𝑗𝑘

𝐼 = (𝑆,𝛾𝛽
𝐼 − 𝑆,𝛼

𝐼 𝐴𝑖𝛾,𝛽𝐴𝛼𝑖
−1)𝐴𝛽𝑘

−1𝐴𝛾𝑗
−1  .                                                 (4.7) 

Thus, interpolating the displacement 𝑢 through the cell using the functions 𝑆𝐼 one has 

𝑢 = 𝑆𝐼𝑢𝐼  ,          𝑢,𝑖 = 𝑆,𝑖
𝐼𝑢𝐼  ,          𝑢,𝑖𝑗 = 𝑆,𝑖𝑗

𝐼 𝑢𝐼  ,                                                                  (4.8) 

where 𝑢𝐼 are the values of the displacement at the cell’s points. In particular, for the Laplacian and normal 

derivative, 

∇2𝑢 = 𝑆,𝑖𝑖
𝐼 𝑢𝐼  ,          𝑢,𝑛 = 𝑛𝑖𝑢,𝑖 = 𝑛𝑖𝑆,𝑖

𝐼𝑢𝐼  ,                                                                           (4.9) 

where 𝑛𝑖 is the outward-pointing unit normal on the boundary. 

 

 Turning attention to Fig. 4 above, the computational procedure of the cell method is as follows. 
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Figure 4 shows four copies of the same 4 × 4 computational grid of points. In each copy, in blue and red, 

are shown the four differentiation cells. Note that the cells overlap. First, at each of the four internal (red) 

points of the grid, an algebraic equation is constructed by evaluating the governing equation (1.1) at 

point 4 of each cell (via the operator in the first of eqns. 4.9). Algebraic equations for the remaining 12 

points are supplied by the boundary conditions, by either prescribing 𝑢 or the normal derivative 𝑢,𝑛 (via 

the operator in the second of eqns. 4.9). Note that the boundary conditions are applied at either the 

points 1, 3, 5 or 7 of the cell (unless the boundary point is on a corner, for which the boundary conditions 

are applied at either the points 0, 2, 6 or 8 of the cell). In any case, a 16 × 16 system of equations has 

been constructed, which system may be solved for the 16 nodal displacements. 

 

5. Numerical Example in Rectangular Coordinates 
 

 Here the problem solved analytically in Sec. 2 is solved numerically. Due to symmetry, only the 

upper right quadrant of Fig. 1 needs to be analyzed. The corresponding boundary conditions are 

𝑢 = 0  on  𝑥 =
𝐿

2
  and  𝑦 =

𝐻

2
  ;           𝑢,𝑛 = 0  on  𝑥 = 0  and  𝑦 = 0  .                         (5.1) 

The values of the constants used in the analysis are 

𝐿 = 12 in ,     𝐻 = 8 in  ,     𝑇 = 4.14 × 10−4  
lb

in
  ,          𝑝0 = 0.005 

lb

in2
  .                     (5.2) 

Note that the value of 𝑇 is for water. 

 

 
Figure 5. Computational grid used in the analysis. 

 

The computational grid used is shown directly above in Fig. 5. It consists of a 37 × 25 array of 

925 points, and a 35 × 23 array of 805 overlapping differentiation cells. 

 

In the graphs of the calculated solution shown below in Figs. 6 through 10, the solid curves are 

from the analytical solution; and the plotted points, from the numerical solution. Looking at the graphs 

below, the magnitudes of the displacements are very large (which just means that the value used for 𝑝0 in 

eqn. 5.2 is unrealistically large). 
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Notwithstanding, the results for the displacement 𝑢 at the left boundary 𝑥 = 0 are shown below 

in Fig. 6. As is evident, the numerical results basically coincide with the exact solution. The same thing 

can be said for the displacement gradient 𝑢,𝑦 at 𝑥 = 0 (Fig. 7 below). 

 

          Figure 8 below shows the displacement 

gradient 𝑢,𝑥 at the right boundary 𝑥 = 𝐿 2⁄ . Once 

again, the numerically calculated results are 

highly accurate. 

Figure 6. The displacement 𝑢 at 𝑥 = 0.  

 

  
Figure 7. The displacement gradient 𝑢,𝑦 at 𝑥 = 0. Figure 8. The displacement gradient 𝑢,𝑥 at 

                𝑥 = 𝐿 2⁄ . 
 

 

 

 

 

 

 

Finally, Figs. 9 and 10 below show the results for, respectively, the displacement 𝑢, and the 

displacement gradients 𝑢,𝑥 and 𝑢,𝑦 along a vertical line through the grid located at 𝑥 = 𝐿 4⁄ . As has been 

the case all along, for all practical purposes, the numerical results correspond to the exact results. 
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Figure 9. The displacement 𝑢 at 𝑥 = 𝐿 4⁄ . Figure 10. The displacement gradients 𝑢,𝑥 (red) 

                  and 𝑢,𝑦 (blue) at 𝑥 = 𝐿 4⁄ . 

 

6. Numerical Example in Polar Coordinates 
 

 
Figure 11. Grid used in the analysis. 

 

Here the problem solved analytically above in Sec. 3 is solved numerically. The grid used in the 

analysis is shown directly above in Fig. 11. It consists of a 25 (radial) × 37 (tangential) array of 925 

points, and a 23 (radial) × 35 (tangential) array of 805 overlapping differentiation cells. The constants 

used in the analysis are 
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𝑎 = 6 in  ,          𝑏 = 12 in  ,          𝑇 = 4.14 × 10−4  
lb

in
  ,          𝐹 = 2 lb  .                            (6.1) 

 

 In the graphs of Figs. 12 through 18 below, the solid curves are from the analytical solution; and 

the plotted points, the numerical solution. As was the case in Sec. 5, here the magnitudes of the 

displacements are unrealistically high (which just means that the value used for 𝐹 in eqn. 6.1 is 

unrealistically large). 

 

  
Figure 12. Displacement 𝑢 at 𝜃 = 0. Figure 13. Displacement gradient 𝑢,𝑥 at 𝜃 = 0. 

 

 Notwithstanding, the solution along the bottom of the domain at 𝜃 = 0 is shown above in 

Figs. 12 and 13. As is seen, both the calculated displacement 𝑢 and displacement gradient 𝑢,𝑥 are highly 

accurate. 
 

  
Figure 14. Displacement gradient 𝑢,𝑥 at 𝜃 = 𝜋 2⁄ . Figure 15. Displacement 𝑢 at 𝜃 = 𝜋 4⁄ . 
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 Figure 14 at above left shows the displacement gradient 𝑢,𝑥 along the left boundary of the domain 

at 𝜃 = 𝜋 2⁄ . Once again, the numerically calculated solution basically coincides with the exact solution. 

 

 Figures 15 (above right) and 16 (below left) show the solution along the radial line of grid points 

located at 𝜃 = 𝜋 4⁄ . As before, the displacement 𝑢 (Fig. 15) and displacement gradient 𝑢,𝑥 (Fig. 16) both, 

for all practical purposes, reproduce the exact solution. Note that at 𝜃 = 𝜋 4⁄ , 𝑢,𝑥 = 𝑢,𝑦. 
 

  
Figure 16. Displacement gradient 𝑢,𝑥 at 𝜃 = 𝜋 4⁄ . Figure 17. Displacement 𝑢 at 𝑟 = 8.98984 in. 

 

 

          Finally, Figs. 17 (above) and 18 (at left) 

show the numerically calculated solution along 

the circumferential ring of grid points located at 

𝑟 = 8.98984 in. As has been the case all along, 

the numerically calculated solution is highly 

accurate. 

 

7. Concluding Remarks 
 

          The cell method is perhaps simpler to 

implement than the finite element method, and the 

idea behind it is easy to understand. There is not 

much else to comment on, except that, at least for 

Poisson’s equation, the numerical method yields 

highly accurate results. 

 

 

Figure 18. Displacement gradients 𝑢,𝑥 (red) and 

                 𝑢,𝑦 (blue) at 𝑟 = 8.98984 in. 

 

 


