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1. Introductory Comments 
 

 The material herein is for use in a three-dimensional finite element program for finite elasticity in 

three dimensions. Such a program, i.e., FiniteElasticity3D.java, is located on this web site. When 

the author first started to write that program, he tried to do the required three-dimensional eigenproblems 

by using characteristic polynomials and rank-deficient systems to calculate the eigenvalues and 

eigenvectors. Such an approach turned out to be highly cumbersome and unreliable. Consequently, in the 

above-mentioned finite element program (again, on this web site), the author resorted to using Babylonian 

iteration to perform the polar decomposition, and to using a Taylor series expansion to calculate the 

logarithmic strain. While this approach is reliable, its numerical execution is rather slow. The procedures 

outlined below have also been found to be reliable, but numerically execute more quickly, and thus are 

probably superior to the Babylonian iteration/Taylor series procedures just described. 

 

2. The Three-Dimensional Eigenproblem 
 

 Consider a three-dimensional, symmetric matrix 𝐴, viz., 

𝐴 = [ 
𝐴00 𝐴01 𝐴02

𝐴01 𝐴11 𝐴12

𝐴02 𝐴12 𝐴22

 ]  ,          𝐴𝐸 = [ 

𝜆0 0 0
0 𝜆1 0
0 0 𝜆2

 ]   ,          𝐴 = 𝜓𝑇𝐴𝐸𝜓  ,          𝐴𝐸 = 𝜓𝐴𝜓𝑇  ,    (2.1) 

where  

𝐞𝑖
𝐸 = 𝜓𝑖𝑗𝐞𝑗  .                                                                                                                                                         (2.2) 

In eqns. (2.1) and (2.2), 𝜆𝑖 are the eigenvalues of matrix 𝐴, 𝐞𝑖
𝐸 are the corresponding eigenvectors, 𝐞𝑖 are 

the Cartesian base vectors of three-dimensional space, and 𝜓 is the rotation matrix. 

 

 The rotation matrix 𝜓 can be constructed by performing three successive rotations about, in order, 

the 𝑥–, 𝑦– and 𝑧–axes. Thus 

𝜓2 = [ 
cos 𝛼 sin𝛼 0

− sin𝛼 cos𝛼 0
0 0 1

 ]  ,     𝜓1 = [ 
cos 𝛽 0 sin𝛽

0 1 0
− sin𝛽 0 cos𝛽

 ]  ,     𝜓0 = [ 
1 0 0
0 cos 𝛾 sin𝛾
0 − sin𝛾 cos 𝛾

 ]    (2.3) 

so that 𝜓 = 𝜓2𝜓1𝜓0, i.e., 

𝜓 = [ 

cos 𝛼 cos𝛽 − cos𝛼 sin𝛽 sin 𝛾 + sin𝛼 cos 𝛾 cos𝛼 sin𝛽 cos 𝛾 + sin𝛼 sin 𝛾
− sin𝛼 cos𝛽 sin𝛼 sin𝛽 sin𝛾 + cos𝛼 cos 𝛾 − sin𝛼 sin𝛽 cos 𝛾 + cos𝛼 sin 𝛾

−sin𝛽 − cos𝛽 sin𝛾 cos𝛽 cos 𝛾
 ]  .       (2.4) 

Also, 

𝜕𝜓

𝜕𝛼
= [ 

− sin𝛼 cos𝛽 sin 𝛼 sin𝛽 sin 𝛾 + cos𝛼 cos 𝛾 − sin𝛼 sin𝛽 cos 𝛾 + cos𝛼 sin 𝛾
− cos𝛼 cos𝛽 cos 𝛼 sin𝛽 sin𝛾 − sin𝛼 cos 𝛾 − cos𝛼 sin𝛽 cos𝛾 − sin𝛼 sin 𝛾

0 0 0

 ]  ,                    

𝜕𝜓

𝜕𝛽
= [ 

− cos𝛼 sin𝛽 − cos𝛼 cos𝛽 sin𝛾 cos𝛼 cos𝛽 cos 𝛾
sin𝛼 sin𝛽 sin 𝛼 cos𝛽 sin𝛾 −sin𝛼 cos𝛽 cos 𝛾
−cos𝛽 sin𝛽 sin 𝛾 − sin𝛽 cos𝛾

 ]  ,                                                      (2.5) 

𝜕𝜓

𝜕𝛾
= [ 

0 − cos𝛼 sin𝛽 cos𝛾 − sin𝛼 sin 𝛾 − cos𝛼 sin𝛽 sin 𝛾 + sin𝛼 cos 𝛾
0 sin𝛼 sin𝛽 cos 𝛾 − cos𝛼 sin 𝛾 sin𝛼 sin𝛽 sin𝛾 + cos𝛼 cos 𝛾
0 − cos𝛽 cos 𝛾 − cos𝛽 sin𝛾

 ]  .                                      
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 To solve for the matrix 𝜓, use the last of eqns. (2.1), i.e., 𝐴𝑖𝑗
𝐸 = 𝜓𝑖𝑘𝜓𝑗𝑙𝐴𝑘𝑙. Specifically, use the 

three components (𝑖𝑗) ∈ (01,02,12) so that 

0 = 𝜓𝑖𝑘𝜓𝑗𝑙𝐴𝑘𝑙  ,                                                                                                                           (2.6) 

which is a nonlinear 3 × 3 system in the three variables 𝛼, 𝛽 and 𝛾. An effective means of solving 

eqn. (2.6) is to use Newton-Raphson iteration. Thus, we have the residual 

𝑟(𝑖𝑗) = 𝜓𝑖𝑘𝜓𝑗𝑙𝐴𝑘𝑙 = 0 ,                                                                                                              (2.7) 

and, using the notation (𝑥0, 𝑥1, 𝑥2) = (𝛼, 𝛽, 𝛾), the iterative procedure 

𝐽(𝑖𝑗)𝑚∆𝑥𝑚 = −𝑟(𝑖𝑗)  ,          𝑥𝑚
0

0
imp

= 𝑥𝑚 + ∆𝑥𝑚  ,                                                                (2.8) 

where 𝑥𝑚
0

0
imp

 is an improved guess for 𝑥𝑚. The Jacobian in eqn. (2.8) is 

𝐽(𝑖𝑗)𝑚 =
𝜕𝑟(𝑖𝑗)

𝜕𝑥𝑚
=

𝜕𝜓𝑖𝑘

𝜕𝑥𝑚
𝜓𝑗𝑙𝐴𝑘𝑙 + 𝜓𝑖𝑘

𝜕𝜓𝑗𝑙

𝜕𝑥𝑚
𝐴𝑘𝑙   .                                                                  (2.9) 

Reliable results are obtained by initially guessing that 𝑥𝑚 = 0, and by iterating until ∑ |∆𝑥𝑖|
3
𝑖=0 ≤ 10−7. 

So, knowing 𝑥𝑚, 𝜓 is known, and once 𝜓 is known, the eigenvalues are found from the components 

(𝑖𝑗) ∈ (00,11,22) of 𝐴𝑖𝑗
𝐸 = 𝜓𝑖𝑘𝜓𝑗𝑙𝐴𝑘𝑙. Thus, 

𝜆𝑖 = 𝜓𝑖𝑘𝜓(𝑖)𝑙𝐴𝑘𝑙   .                                                                                                                    (2.10) 

 

 In a numerical method for three-dimensional nonlinear elasticity, the gradients of 𝜆𝑖 and 𝜓𝑖𝑗 with 

respect to the components 𝐴𝑝𝑞 are required. Consequently, differentiation of eqn. (2.6) yields 

0 =
𝜕𝜓𝑖𝑘

𝜕𝐴𝑝𝑞
𝜓𝑗𝑙𝐴𝑘𝑙 + 𝜓𝑖𝑘

𝜕𝜓𝑗𝑙

𝜕𝐴𝑝𝑞
𝐴𝑘𝑙 +

1

2
(𝜓𝑖𝑝𝜓𝑗𝑞 + 𝜓𝑖𝑞𝜓𝑗𝑝) .                                          (2.11) 

Now, via the Chain Rule, 𝜕𝜓𝑖𝑗 𝜕𝐴𝑝𝑞⁄ = (𝜕𝜓𝑖𝑗 𝜕𝑥𝑚⁄ )(𝜕𝑥𝑚 𝜕𝐴𝑝𝑞⁄ ), which when put into eqn. (2.11) 

gives 

𝐽(𝑖𝑗)𝑚
𝜕𝑥𝑚

𝜕𝐴𝑝𝑞
= −

1

2
(𝜓𝑖𝑝𝜓𝑗𝑞 + 𝜓𝑖𝑞𝜓𝑗𝑝)  ,                                                                         (2.12) 

where 𝐽(𝑖𝑗)𝑚 is as per eqn. (2.9) above. Finally, eqn. (2.12) may be solved for 𝜕𝑥𝑚 𝜕𝐴𝑝𝑞⁄  so that the 

gradients 𝜕𝜓𝑖𝑗 𝜕𝐴𝑝𝑞⁄  are found. Knowing 𝜕𝜓𝑖𝑗 𝜕𝐴𝑝𝑞⁄ , then differentiation of eqn. (2.10) gives the 

gradients of 𝜆𝑖, viz., 

𝜕𝜆𝑖

𝜕𝐴𝑝𝑞
=

𝜕𝜓𝑖𝑘

𝜕𝐴𝑝𝑞
𝜓(𝑖)𝑙𝐴𝑘𝑙 + 𝜓𝑖𝑘

𝜕𝜓(𝑖)𝑙

𝜕𝐴𝑝𝑞
𝐴𝑘𝑙 + 𝜓𝑖𝑝𝜓(𝑖)𝑞  .                                                (2.13) 

An advantage of the above method, as compared to the Babylonian iteration/Taylor series method 

described in Sec. 1, is that, once 𝜓 is known, then the expressions for the gradients of 𝜆𝑖 and 𝜓𝑖𝑗 are in 

closed form. 

 

 As a numerical example, for 

𝐴 = [ 
3 2 1
2 8 5
1 5 4

 ]  ,                                                                                                             (2.14) 

the above procedures yield 
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𝜓 = [ 
−0.146 827 0.579 220 −0.801 839
−0.240 972 −0.807 148 −0.538 929
−0.959 361 0.114 092 0.258 087

 ]  ,                                                                                           

𝐴𝐸 = [ 
0.571 259 0 0

0 11.935 6 0
0 0 2.493 13

 ]  .                                                                                          (2.15) 

One may verify that eqn. (2.15) satisfies 𝐴 = 𝜓𝑇𝐴𝐸𝜓. 

 

3. The Polar Decomposition Theorem 
 

 The Polar Decomposition Theorem states that 

𝐹 = 𝑉𝑅  ,                                                                                                                                                             (3.1) 

where 𝐹 is the deformation gradient, 𝑉 is the (symmetric) left stretch tensor (with positive eigenvalues), 

and 𝑅 is the rotation tensor. Consider 

𝐵 = 𝐹𝐹𝑇 = 𝑉𝑅𝑅𝑇𝑉 = 𝑉𝐼𝑉 = 𝑉𝑉     ⇒      𝑉 = √𝐵  .                                                                              (3.2) 

This square root is calculated via 

𝐵𝐸 = [ 

𝜆0 0 0
0 𝜆1 0
0 0 𝜆2

 ]  ,       𝐵𝐸 = 𝜓𝐵𝜓𝑇  ,       𝑉𝐸 = [ 

√𝜆0 0 0

0 √𝜆1 0

0 0 √𝜆2

 ]   ,       𝑉 = 𝜓𝑇𝑉𝐸𝜓  .    (3.3) 

 

Now, the gradients 𝜕𝑉𝑖𝑗 𝜕𝐹𝑝𝑞⁄  are required for use in a finite element code. Consequently, 

differentiation of 𝐵 = 𝑉𝑉 yields 

𝜕𝐵𝑖𝑗

𝜕𝑉𝑝𝑞
=

1

2
(𝛿𝑖𝑝𝑉𝑗𝑞 + 𝛿𝑖𝑞𝑉𝑗𝑝 + 𝑉𝑖𝑝𝛿𝑗𝑞 + 𝑉𝑖𝑞𝛿𝑗𝑝)  ,                                                                                     (3.4) 

where 𝛿𝑖𝑗 is the Kronecker delta (i.e., the 3 × 3 identity matrix). But, the quantities 𝜕𝑉𝑝𝑞 𝜕𝐵𝑘𝑙⁄  are 

needed, which quantities follow the inverse relation 

𝜕𝐵𝑖𝑗

𝜕𝑉𝑝𝑞

𝜕𝑉𝑝𝑞

𝜕𝐵𝑘𝑙
= 𝐼𝑖𝑗𝑘𝑙 =

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙)  ,                                                                                               (3.5) 

in which 𝐼𝑖𝑗𝑘𝑙 is the fully symmetric fourth-order identity tensor. Equation (3.5) can be written in matrix 

form as 

[ 
𝜕𝐵

𝜕𝑉
 ] [ 

𝜕𝑉

𝜕𝐵
 ] = 𝐼6×6  ,                                                                                                                                  (3.6) 

where 
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[ 
𝜕𝐵

𝜕𝑉
 ] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜕𝐵00

𝜕𝑉00
2

𝜕𝐵00

𝜕𝑉01
2

𝜕𝐵00

𝜕𝑉02

2
𝜕𝐵01

𝜕𝑉00
4

𝜕𝐵01

𝜕𝑉01
4

𝜕𝐵01

𝜕𝑉02

2
𝜕𝐵02

𝜕𝑉00
4

𝜕𝐵02

𝜕𝑉01
4

𝜕𝐵02

𝜕𝑉02

𝜕𝐵00

𝜕𝑉11
2

𝜕𝐵00

𝜕𝑉12

𝜕𝐵00

𝜕𝑉22

2
𝜕𝐵01

𝜕𝑉11
4

𝜕𝐵01

𝜕𝑉12
2

𝜕𝐵01

𝜕𝑉22

2
𝜕𝐵02

𝜕𝑉11
4

𝜕𝐵02

𝜕𝑉12
2

𝜕𝐵02

𝜕𝑉22

𝜕𝐵11

𝜕𝑉00
2

𝜕𝐵11

𝜕𝑉01
2

𝜕𝐵11

𝜕𝑉02

2
𝜕𝐵12

𝜕𝑉00
4

𝜕𝐵12

𝜕𝑉01
4

𝜕𝐵12

𝜕𝑉02

𝜕𝐵22

𝜕𝑉00
2

𝜕𝐵22

𝜕𝑉01
2

𝜕𝐵22

𝜕𝑉02

𝜕𝐵11

𝜕𝑉11
2

𝜕𝐵11

𝜕𝑉12

𝜕𝐵11

𝜕𝑉22

2
𝜕𝐵12

𝜕𝑉11
4

𝜕𝐵12

𝜕𝑉12
2

𝜕𝐵12

𝜕𝑉22

𝜕𝐵22

𝜕𝑉11
2

𝜕𝐵22

𝜕𝑉12

𝜕𝐵22

𝜕𝑉22

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 

  ,                                                  (3.7) 

and 

[ 
𝜕𝑉

𝜕𝐵
 ] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜕𝑉00

𝜕𝐵00

𝜕𝑉00

𝜕𝐵01

𝜕𝑉00

𝜕𝐵02

𝜕𝑉01

𝜕𝐵00

𝜕𝑉01

𝜕𝐵01

𝜕𝑉01

𝜕𝐵02

𝜕𝑉02

𝜕𝐵00

𝜕𝑉02

𝜕𝐵01

𝜕𝑉02

𝜕𝐵02

𝜕𝑉00

𝜕𝐵11

𝜕𝑉00

𝜕𝐵12

𝜕𝑉00

𝜕𝐵22

𝜕𝑉01

𝜕𝐵11

𝜕𝑉01

𝜕𝐵12

𝜕𝑉01

𝜕𝐵22

𝜕𝑉02

𝜕𝐵11

𝜕𝑉02

𝜕𝐵12

𝜕𝑉02

𝜕𝐵22

𝜕𝑉11

𝜕𝐵00

𝜕𝑉11

𝜕𝐵01

𝜕𝑉11

𝜕𝐵02

𝜕𝑉12

𝜕𝐵00

𝜕𝑉12

𝜕𝐵01

𝜕𝑉12

𝜕𝐵02

𝜕𝑉22

𝜕𝐵00

𝜕𝑉22

𝜕𝐵01

𝜕𝑉22

𝜕𝐵02

𝜕𝑉11

𝜕𝐵11

𝜕𝑉11

𝜕𝐵12

𝜕𝑉11

𝜕𝐵22

𝜕𝑉12

𝜕𝐵11

𝜕𝑉12

𝜕𝐵12

𝜕𝑉12

𝜕𝐵22

𝜕𝑉22

𝜕𝐵11

𝜕𝑉22

𝜕𝐵12

𝜕𝑉22

𝜕𝐵22

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 

  .                                                                       (3.8) 

Thus, calculating the quantities 𝜕𝑉𝑝𝑞 𝜕𝐵𝑘𝑙⁄  amounts to inverting a 6 × 6 matrix. Next, differentiating 

𝐵 = 𝐹𝐹𝑇 yields 

𝜕𝐵𝑘𝑙

𝜕𝐹𝑝𝑞
= 𝛿𝑘𝑝𝐹𝑙𝑞 + 𝐹𝑘𝑞𝛿𝑙𝑝  .                                                                                                                               (3.9) 

Finally, by the Chain Rule then 

𝜕𝑉𝑖𝑗

𝜕𝐹𝑝𝑞
=

𝜕𝑉𝑖𝑗

𝜕𝐵𝑘𝑙

𝜕𝐵𝑘𝑙

𝜕𝐹𝑝𝑞
  .                                                                                                                                       (3.10) 

 

4. The Logarithmic Strain Tensor 
 

 The logarithmic strain 𝜀 is defined by 

𝜀 = ln𝑉 .                                                                                                                                                            (4.1) 

Once again, the logarithm is calculated via the three-dimensional eigenproblem 

𝑉𝐸 = [ 

𝜆0 0 0
0 𝜆1 0
0 0 𝜆2

 ]  ,       𝑉𝐸 = 𝜓𝑉𝜓𝑇  ,       𝜀𝐸 = [ 

ln 𝜆0 0 0
0 ln 𝜆1 0
0 0 ln 𝜆2

 ]   ,       𝜀 = 𝜓𝑇𝜀𝐸𝜓  .   (4.2) 

 

 To calculate the required gradients 𝜕𝜀𝑖𝑗 𝜕𝑉𝑝𝑞⁄ , differentiate the last of eqns. (4.2). One obtains 
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𝜕𝜀𝑖𝑗

𝜕𝑉𝑝𝑞
=

𝜕𝜀𝑘𝑙
𝐸

𝜕𝑉𝑝𝑞
𝜓𝑘𝑖𝜓𝑙𝑗 + 𝜀𝑘𝑙

𝐸
𝜕𝜓𝑘𝑖

𝜕𝑉𝑝𝑞
𝜓𝑙𝑗 + 𝜀𝑘𝑙

𝐸 𝜓𝑘𝑖

𝜕𝜓𝑙𝑗

𝜕𝑉𝑝𝑞
  ,                                                               (4.3) 

where 

𝜕𝜀𝐸

𝜕𝑉𝑝𝑞
=

[
 
 
 
 
 
 

 

1

𝜆0

𝜕𝜆0

𝜕𝑉𝑝𝑞
0 0

0
1

𝜆1

𝜕𝜆1

𝜕𝑉𝑝𝑞
0

0 0
1

𝜆2

𝜕𝜆2

𝜕𝑉𝑝𝑞

 

]
 
 
 
 
 
 

  .                                                                                   (4.4) 

Note that the derivatives 𝜕𝜓𝑖𝑗 𝜕𝑉𝑝𝑞⁄  and 𝜕𝜆𝑖 𝜕𝑉𝑝𝑞⁄  appearing in eqns. (4.3) and (4.4) are as per, 

respectively, eqns. (2.11) and (2.13) with 𝑉𝑝𝑞 replacing 𝐴𝑝𝑞. 

 

5. Example 
 

A program was written using the formulas in Secs. 2 through 4, and as numerical example of 

using the formulas, consider the deformation gradient 

𝐹 = [ 
0.75 0.25 0.5

−0.125 1.5 −0.75
−1.75 2.0 1.25

 ]  .                                                                                             (5.1) 

The above-mentioned program gives for the left stretch tensor 

𝑉 = [ 
0.933 900 −0.027 895 4 −0.045 306 0

−0.027 895 4 1.603 16 0.507 169
−0.045 306 0 0.507 169 2.892 36

 ]  ,                                                (5.2) 

and for the logarithmic strain 

𝜀 = [ 
−0.069 092 3 −0.018 849 2 −0.024 117 6
−0.018 849 2 0.437 725 0.236 368
−0.024 117 6 0.236 368 1.038 92

 ]  .                                                (5.3) 

The results (5.2) and (5.3) have been verified by solving the two eigenproblems for 𝑉 and 𝜀 by hand. 


