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1. Introductory Comments

The material herein is for use in a three-dimensional finite element program for finite elasticity in
three dimensions. Such a program, i.e.,, FiniteElasticity3D.java, is located on this web site. When
the author first started to write that program, he tried to do the required three-dimensional eigenproblems
by using characteristic polynomials and rank-deficient systems to calculate the eigenvalues and
eigenvectors. Such an approach turned out to be highly cumbersome and unreliable. Consequently, in the
above-mentioned finite element program (again, on this web site), the author resorted to using Babylonian
iteration to perform the polar decomposition, and to using a Taylor series expansion to calculate the
logarithmic strain. While this approach is reliable, its numerical execution is rather slow. The procedures
outlined below have also been found to be reliable, but numerically execute more quickly, and thus are
probably superior to the Babylonian iteration/Taylor series procedures just described.

2. The Three-Dimensional Eigenproblem

Consider a three-dimensional, symmetric matrix A4, viz.,

Apo Aor Aoz Ao 0 0
A=|(Ap1 A1 A2 |, AE =10 A O , A= 1/1TAE1/’ , Af = ¢A¢T , (2-1)
Agy A1z Ay 0 0 2
where
el =ye; . (2.2)

In eqns. (2.1) and (2.2), A; are the eigenvalues of matrix A, ef are the corresponding eigenvectors, e; are
the Cartesian base vectors of three-dimensional space, and v is the rotation matrix.

The rotation matrix 1 can be constructed by performing three successive rotations about, in order,
the x—, y— and z—axes. Thus
cosa sina 0 cosf 0 sinf 1 0 0
Y?=|—-sina cosa 0|, yY'= 0 1 0 |, y¥°=|0 cosy siny| (2.3)

0 0 1 —sinff 0 cospf 0 —siny cosy
so that Y = Y2yP1y°, ie,
cosacosff —cosasinfsiny +sinacosy cosasinfcosy+sinasiny
1p=[—sinacosﬁ sina sin 8 siny + cosa cosy —sinasin[)’cosy+cosasiny]. (2.4)
—sinf —cosf siny cosff cosy
Also,
o [ —sinacosf sinasinfsiny +cosacosy —sinasinfcosy + cosasiny
Frie —cosacosfl cosasinfsiny —sinacosy —cosasinfcosy —sinasiny |,
0 0 0
o [—cosasinff —cosacosfsiny cosacosf cosy
— =| sinasinf sinacosfsiny —sinacosfcosy |, (2.5)
ap . . .
—cosf sinf siny —sinf cosy
o (0 —cosasinfcosy —sinasiny —cosasinfsiny +sinacosy
6_= 0 sinasinfcosy —cosasiny sinasin B siny + cosa cosy
Y lo —cosf cosy —cosfsiny
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To solve for the matrix 1, use the last of eqns. (2.1), i.e,, A'i5]- = YA Specifically, use the
three components (ij) € (01,02,12) so that

0 =Yyl , (2.6)

which is a nonlinear 3 X 3 system in the three variables a,  and y. An effective means of solving
eqn. (2.6) is to use Newton-Raphson iteration. Thus, we have the residual

T = Yu¥jidp =0, (2.7)
and, using the notation (x,, x1, x,) = (@, B,v), the iterative procedure

imp

JapymBxm = —Tqj) X = X + DX, (2.8)
where impxm is an improved guess for x,,,. The Jacobian in eqn. (2.8) is
0Ty _ 81/) K 0P
Jajym = 7 : ¢11Ak1 Yk Akl : (2.9)
0xp, 0xpy,

Reliable results are obtained by initially guessing that x,, = 0, and by iterating until Y.3_,|Ax;| < 1077.
So, knowing x,,,, 1 is known, and once Y is known, the eigenvalues are found from the components
(i) € (00,11,22) of Afj = Yu1p;Apy. Thus,

i =Yl - (2.10)

In a numerical method for three-dimensional nonlinear elasticity, the gradients of 4; and 1;; with
respect to the components A, are required. Consequently, differentiation of eqn. (2.6) yields

0P 0y

0= aqu lp]l kl + ll)lk aA Akl +5 (ll)lpllqu + l/’tql/}]p) (2-11)

Now, via the Chain Rule, dv;; /04,4 = (azpu/axm)(axm/aqu) which when put into eqn. (2.11)

gives
0xpm
Janmaz (lplplp]q + Yigjp) (2.12)

where J(;j)m 18 as per eqn. (2.9) above. Finally, eqn. (2.12) may be solved for dx,,/0Ay, so that the
gradients 01;j/9 A, are found. Knowing 01;;/0A,,, then differentiation of eqn. (2.10) gives the
gradients of 4;, viz.,

0A; 0y oYy
oA, oA, — VYolhu Vi oA,

Akl + l»blpll’(t)q : (2-13)

An advantage of the above method, as compared to the Babylonian iteration/Taylor series method
described in Sec. 1, is that, once 1 is known, then the expressions for the gradients of 4; and v;; are in

closed form.

As a numerical example, for

3 21
A=1|2 8 5] (2.14)
1 5 4

the above procedures yield
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—-0.146 827 0.579220 —0.801839
Y =1]-0.240972 —-0.807148 —-0.538929 |,
—0.959361 0.114092  0.258 087
0.571 259 0 0
AE = 0 11.9356 0 (2.15)
0 0 249313
One may verify that eqn. (2.15) satisfies A = YT AE.
3. The Polar Decomposition Theorem
The Polar Decomposition Theorem states that
F=VR, (3.1

where F is the deformation gradient, V is the (symmetric) left stretch tensor (with positive eigenvalues),
and R is the rotation tensor. Consider

B=FFT=VRRTV=VIV=VV = V=+B. (3.2)
This square root is calculated via

I 0 0 Vi 00
0 A4 0 ] , BE=yByYyT, VE=| 0 A 0|, V=yTvEyp. (3.3)
0

0 0 A, 0 \//1—2

Now, the gradients dV;;/9F,, are required for use in a finite element code. Consequently,
differentiation of B = VV yields

9B; 1
Wy = E(‘Sipvjq + 8iqVjp + Vipdjq + Viq5jp) ’ (3.4)

where §;; is the Kronecker delta (i.e., the 3 X 3 identity matrix). But, the quantities 0V, /9By, are
needed, which quantities follow the inverse relation

0Bi; 0Vpq

a‘/pq aBkl — Llijkl —

BE =

1
§(5ik5j1 +8x8u) (3.5)

in which [ is the fully symmetric fourth-order identity tensor. Equation (3.5) can be written in matrix
form as

7] 5= e 59)

where
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Voo Vo1 Vo2  0Viy Viz 0V

0B 0B 0B 0B 0B 0B
o1 ,%01 ,9%%01 ,05%1 ,%01 09501

Voo Vo1 Vo2 V11 %P V3,

0B, 0B, 0B, 0B, 0B, 0B,
; 50802 0Bz 0Bz 08B0z 0Boz 080y
[_B] _ Voo Vo1 Vo, V14 Vi, Vs, 3.7)

0B 0B 0B 0B 0B 0B
20012 ,0%12 0512 ,0812 0012 0012

2

and

[ aVOO aVOO 6V00 aVOO aVOO aVOO )
0Boo 0Bg1 0By 0By; 0By 0By,
Vo1 0Vor 0Voy Vo1 0Vpy 0Vpy

0Byy 0By 0By, 0By 0Byx 0By,
Vo2 0Vop 0Vop OVoy 0Vop 0V,
6_V] _|9Boo 9Bo1 0Bop 0By 0Bip; 0By (3.8)
0B 0Vip 0Vyy 0Vip 0V 0Vyy 0Vyy | .

0Byy 0By; 0By 0By 0By, 0By,
vy, dVy, adVy, dVy, adVy, dVi,

0Byg 0Bo1 0By 0By; 0Bz 0By
oy OVpy OVpp 0V 0V 0V

Thus, calculating the quantities 9V}, /9By, amounts to inverting a 6 X 6 matrix. Next, differentiating
B = FFT yields

anq = SkPqu + quslp . (39)

Finally, by the Chain Rule then
dVij  0Vi; 0By

= : 3.10
0F,; 0By 0F,, (3.10)
4. The Logarithmic Strain Tensor
The logarithmic strain ¢ is defined by
e=InV. (4.1

Once again, the logarithm is calculated via the three-dimensional eigenproblem

A 0 0 Inl, 0 0
VE=|0 2, O ] , VE=yvyT, ££F= [ 0 1Ini, O ] , e=ylefy . (4.2)
0 0 2, 0 0 InA,

To calculate the required gradients d¢;;/dV,,, differentiate the last of eqns. (4.2). One obtains

5
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E)ei] agkl 1/)kz I/J j
where
r 1 dA,
—_— 0
Ao 0Vq
oeE 0 1 04 0 w
Oy 11 0V ' @4
1 04,
0 I
A2 0Vpq |

Note that the derivatives 91;;/dV,q and d4;/9V,, appearing in eqns. (4.3) and (4.4) are as per,
respectively, eqns. (2.11) and (2.13) with V},, replacing Ap,.

5. Example

A program was written using the formulas in Secs. 2 through 4, and as numerical example of
using the formulas, consider the deformation gradient

0.75 0.25 0.5
F=|-0125 15 -0.75]. 5.1
| —1.75 2.0 1.25

The above-mentioned program gives for the left stretch tensor

0.933900 —0.0278954 —0.0453060
V' =1-0.027 8954 1.603 16 0.507 169 ) (5.2)
[ —0.0453060  0.507 169 2.892 36
and for the logarithmic strain
—0.0690923 -0.0188492 -0.0241176
—0.0188492  0.437 725 0.236 368 (5.3)
—0.0241176  0.236 368 1.038 92

The results (5.2) and (5.3) have been verified by solving the two eigenproblems for V and € by hand.



