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1. Governing Equations 

 

 Here the governing equations of classical plate theory in Cartesian coordinates are listed. Some of the 

equations below contain the two-dimensional alternating symbol 

𝜀𝑖𝑗 = [ 
0 1

−1 0
 ] ,                                                                                                                                             (1.1) 

which possesses the properties 𝜀𝑖𝑗 = −𝜀𝑗𝑖, 𝜀𝑖𝑗𝜀𝑗𝑘 = −𝛿𝑖𝑘, and 𝜀𝑗𝑖𝜀𝑗𝑘 = 𝛿𝑖𝑘, where 𝛿𝑖𝑘 are the components of the 

two-dimensional identity matrix (the so-called Kronecker delta). 

 

 Denoting 𝑢 as the transverse displacement of the plate, the rotation vector 𝜙𝑖 and the curvature tensor 𝜅𝑖𝑗 

are 

𝜙𝑖 = 𝜀𝑖𝑗𝑢,𝑗  ,          𝜅𝑖𝑗 = 𝑢,𝑖𝑗  ,                                                                                                                      (1.2) 

where the comma represents differentiation with respect to the spatial coordinates. Hooke’s Law is 

𝑀𝑥𝑥 = −𝑀𝑦𝑦 =
𝐸ℎ3

12(1 + 𝜈)
 𝜅𝑥𝑦 ,                                                                                                                          

𝑀𝑥𝑦 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝜅𝑥𝑥 + 𝜈𝜅𝑦𝑦 ]  ,                                                                                                     (1.3) 

𝑀𝑦𝑥 =
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝜈𝜅𝑥𝑥 + 𝜅𝑦𝑦 ]  .                                                                                                                   

In eqns. (1.3), 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, 𝑀𝑖𝑗 are the components of the moment tensor, and ℎ is 

the plate thickness. Note that 𝑀𝑖𝑗 is the moment vector in the 𝑗–direction acting on the face whose normal is the 

𝑖–direction. Notwithstanding, eqns. (1.3) can be written in tensorial form as 

𝑀𝑖𝑚𝜀𝑚𝑗 = (𝐌 ∙ 𝛆)𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜅𝑙𝑘 ,                                                                                                                          

𝐶𝑖𝑗𝑘𝑙 =
𝐸ℎ3

12(1 − 𝜈2)
 [ (1 − 𝜈)𝐼𝑖𝑗𝑘𝑙 + 𝜈𝛿𝑖𝑗𝛿𝑘𝑙  ]  ,          𝐼𝑖𝑗𝑘𝑙 =

1

2
( 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙  ) .                      (1.4) 

 

Now, moment equilibrium is 

𝑀𝑗𝑖,𝑗 + 𝜀𝑖𝑗𝑉𝑗 = 0     or     𝑀𝑗𝑖,𝑗𝜀𝑖𝑘 + 𝑉𝑘 = 0  ,                                                                                         (1.5) 

which when written out, is 

𝑉𝑥 = 𝑀𝑥𝑦,𝑥 + 𝑀𝑦𝑦,𝑦     and     𝑉𝑦 = −𝑀𝑥𝑥,𝑥 − 𝑀𝑦𝑥,𝑦 ,                                                                         (1.6) 

where 𝑉𝑖 are the components of the internal shear vector. Next, transverse equilibrium is 

𝑉𝑖,𝑖 + 𝑞 = 0 ,                                                                                                                                                (1.7) 

where 𝑞 is the distributed load (force per unit area acting in the 𝑧–direction). 

 

 Finally, substitution of eqns. (1.3) into eqns. (1.6) gives Hooke’s Law for the shear vector 

𝑉𝑖 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( ∇2𝑢 ),𝑖   ,                                                                                                                (1.8) 

where ∇2𝑢 = 𝑢,𝑥𝑥 + 𝑢,𝑦𝑦 is the Laplacian of 𝑢, and which when put into eqn. (1.7) yields the governing equation 

of the plate, viz., 

𝐸ℎ3

12(1 − 𝜈2)
 ∇4𝑢 = 𝑞 .                                                                                                                             (1.9) 

In eqn. (1.9), ∇4𝑢 = 𝑢,𝑥𝑥𝑥𝑥 + 2𝑢,𝑥𝑥𝑦𝑦 + 𝑢,𝑦𝑦𝑦𝑦 is the bi-harmonic of 𝑢. 
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 Turning attention to polar coordinates, eqns. (1.2) are 

𝜙𝑟 =
1

𝑟
 𝑢,𝜃  ,          𝜙𝜃 = −𝑢,𝑟  ,                                                                                                                                   

𝜅𝑟𝑟 = 𝑢,𝑟𝑟  ,          𝜅𝜃𝜃 =
1

𝑟2
 𝑢,𝜃𝜃 +

1

𝑟
𝑢,𝑟  ,          𝜅𝑟𝜃 = 𝜅𝜃𝑟 =

1

𝑟
𝑢,𝑟𝜃 −

1

𝑟2
𝑢,𝜃 .                                   (1.10) 

In polar coordinates, Hooke’s Law (1.3) is obtained by making the replacements 𝑥 → 𝑟 and 𝑦 → 𝜃 

Now, eqns. (1.8) become in polar coordinates 

𝑉𝑟 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑢,𝑟𝑟𝑟 +

1

𝑟
 𝑢,𝑟𝑟 −

1

𝑟2
𝑢,𝑟 +

1

𝑟2
𝑢,𝑟𝜃𝜃 −

2

𝑟3
𝑢,𝜃𝜃 ]  ,                                                               

𝑉𝜃 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 

1

𝑟
𝑢,𝑟𝑟𝜃 +

1

𝑟2
𝑢,𝑟𝜃 +

1

𝑟3
𝑢,𝜃𝜃𝜃 ]   .                                                                             (1.11) 

Finally, the bi-harmonic operator in eqn. (1.9) is 

∇4𝑢 = 𝑢,𝑟𝑟𝑟𝑟 +
2

𝑟
𝑢,𝑟𝑟𝑟 −

1

𝑟2
𝑢,𝑟𝑟 +

2

𝑟2
𝑢,𝑟𝑟𝜃𝜃 +

1

𝑟3
𝑢,𝑟 −

2

𝑟3
𝑢,𝑟𝜃𝜃 +

4

𝑟4
𝑢,𝜃𝜃 +

1

𝑟4
𝑢,𝜃𝜃𝜃𝜃 .              (1.12) 

 

2. The Principle of Virtual Work 
 

 Let 𝑢∗ be an arbitrary, twice differentiable function (the so-called virtual displacement). By the product 

rule of differentiation then, (𝑢∗𝑉𝑖),𝑖 = 𝑢,𝑖
∗𝑉𝑖 + 𝑢∗𝑉𝑖,𝑖. Substitute the transverse equilibrium eqn. (1.7) into this 

result to obtain 

𝑢,𝑖
∗𝑉𝑖 = (𝑢∗𝑉𝑖),𝑖 + 𝑢∗𝑞 .                                                                                                                                    (2.1) 

Now, the virtual rotation vector is 𝜙𝑗
∗ = 𝜀𝑗𝑖𝑢,𝑖

∗ , and via the moment equilibrium equation (1.5) 𝑉𝑖 = −𝑀𝑘𝑗,𝑘𝜀𝑗𝑖. 

Using these two results in eqn. (2.1) gives 

−𝜙𝑗
∗𝑀𝑘𝑗,𝑘 = (𝑢∗𝑉𝑖),𝑖 + 𝑢∗𝑞 .                                                                                                                          (2.2) 

By the product rule of differentiation again (𝜙𝑗
∗𝑀𝑘𝑗),𝑘

= 𝜙𝑗,𝑘
∗ 𝑀𝑘𝑗 + 𝜙𝑗

∗𝑀𝑘𝑗,𝑘. This result, when put into 

eqn. (2.2), yields 

𝜙𝑗,𝑖
∗ 𝑀𝑖𝑗 = (𝜙𝑗

∗𝑀𝑖𝑗),𝑖
+ (𝑢∗𝑉𝑖),𝑖 + 𝑢∗𝑞 .                                                                                                     (2.3) 

Now, using Hooke’s Law (1.4) and the definition of the virtual rotation vector, 𝜙𝑗,𝑖
∗ 𝑀𝑖𝑗 = 𝑢,𝑗𝑖

∗ (𝐌 ∙ 𝛆)𝑖𝑗 = 

= 𝑢,𝑗𝑖
∗ 𝐶𝑖𝑗𝑘𝑙𝑢,𝑙𝑘, which, when put into eqn. (2.3), gives 

𝑢,𝑗𝑖
∗ 𝐶𝑖𝑗𝑘𝑙𝑢,𝑙𝑘 = (𝜙𝑗

∗𝑀𝑖𝑗),𝑖
+ (𝑢∗𝑉𝑖),𝑖 + 𝑢∗𝑞 .                                                                                           (2.4) 

 

 Integrate eqn. (2.4) over the domain of the plate 𝐴, and use the Divergence Theorem to see 

∫𝑢,𝑗𝑖
∗ 𝐶𝑖𝑗𝑘𝑙𝑢,𝑙𝑘 d𝐴

0

𝐴

= ∮𝜙𝑗
∗ℳ𝑗 d𝑡

0

𝑡

+ ∮𝑢∗𝑉𝑛 d𝑡

0

𝑡

+ ∫𝑢∗𝑞 d𝐴

0

𝐴

  ,                                                            (2.5) 

where ℳ𝑗 = 𝑛𝑖𝑀𝑖𝑗 is the boundary moment vector and 𝑉𝑛 = 𝑛𝑖𝑉𝑖 is the normal component of the shear vector (𝐧 

is the outward pointing unit normal vector on the boundary). Also, 𝑡 is the circumferential coordinate around the 

boundary of the plate (measured in the counterclockwise sense). 

 

 While eqn. (2.5) is valid, the circuit integral terms need to be modified to agree with the admissible 

boundary equations of plate theory. Consequently, using 𝑢,𝑡
∗ = 𝜙𝑛

∗ , the product rule of differentiation gives 

(𝑢∗ℳ𝑛),𝑡 = 𝜙𝑛
∗ℳ𝑛 + 𝑢∗ℳ𝑛,𝑡. Integrating this around the circuit yields 
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∮(𝑢∗ℳ𝑛),𝑡 d𝑡

0

𝑡

= ∮d(𝑢∗ℳ𝑛)

0

𝑡

= 0 = ∮𝜙𝑛
∗ℳ𝑛 d𝑡

0

𝑡

+ ∮𝑢∗ℳ𝑛,𝑡 d𝑡

0

𝑡

                                                                   (2.6) 

or 

∮𝜙𝑛
∗ℳ𝑛 d𝑡

0

𝑡

= −∮𝑢∗ℳ𝑛,𝑡  d𝑡

0

𝑡

 .                                                                                                                                (2.7) 

Thus, via eqn. (2.7) 

∮𝜙𝑗
∗ℳ𝑗 d𝑡

0

𝑡

+ ∮𝑢∗𝑉𝑛 d𝑡

0

𝑡

= ∮𝜙𝑛
∗ℳ𝑛 d𝑡

0

𝑡

+ ∮𝜙𝑡
∗ℳ𝑡 d𝑡

0

𝑡

+ ∮𝑢∗𝑉𝑛 d𝑡

0

𝑡

= ∮𝜙𝑡
∗ℳ𝑡 d𝑡

0

𝑡

+ ∮𝑢∗𝑉̅𝑛 d𝑡

0

𝑡

  ,       (2.8) 

where 𝑉̅𝑛 = 𝑉𝑛 − ℳ𝑛,𝑡 is the Kirchhoff shear force. Finally, then, substitution of eqn. (2.8) into eqn. (2.5) gives 

the Principle of Virtual Work, viz., 

∫𝑢,𝑗𝑖
∗ 𝐶𝑖𝑗𝑘𝑙𝑢,𝑙𝑘 d𝐴

0

𝐴

= ∮𝜙𝑡
∗ℳ𝑡 d𝑡

0

𝑡

+ ∮𝑢∗𝑉̅𝑛 d𝑡

0

𝑡

+ ∫𝑢∗𝑞 d𝐴

0

𝐴

  .                                                                          (2.9) 

From eqn. (2.9), one sees that admissible boundary conditions for plate theory are: prescribe either 𝜙𝑡 or ℳ𝑡 on 

the boundary; and prescribe either 𝑢 or 𝑉̅𝑛. 

 

3. Example in Cartesian Coordinates 

 

 Here, the solution to a simple problem in Cartesian coordinates is presented, which problem will be 

solved numerically later in §8 with the finite element method. 
 

 

          The domain of the rectangular plate under consideration is 

shown at left in Fig. 1. The plate is subject to the distributed load 

𝑞 = −
𝜋2𝐹

4𝐿𝐻
cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                  (3.1) 

where 𝐹 > 0 is the net downward force of the distribution, i.e., 

∫𝑞d𝐴

0

𝐴

= −𝐹 .                                                     (3.2) 

Note that 𝑞 is zero on the boundary and is maximum at the origin. 

Hence the term “bubble.”  On all four faces the boundary 

conditions are 

𝑢 = 0 ,          ℳ𝑡 = 0 ,                                        (3.3) 

which are the so-called “simply-supported” boundary conditions. 

Figure 1. Domain of an 𝐿 by 𝐻 

               rectangular plate. 

 

 

 The governing eqn. (1.9) is, via eqn. (3.1), 

𝑢,𝑥𝑥𝑥𝑥 + 2𝑢,𝑥𝑥𝑦𝑦 + 𝑢,𝑦𝑦𝑦𝑦 = −
3𝜋2(1 − 𝜈2)𝐹

𝐸ℎ3𝐿𝐻
 cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                                                    (3.4) 
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which is solved with a displacement of the form 

𝑢 = 𝑘 cos ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                                                                              (3.5) 

Substituting eqn. (3.5) into eqn. (3.4) gives that 

𝑘 = −
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿3𝐻3

(𝐿2 + 𝐻2)2
 ]  𝐹.                                                                                                                 (3.6) 

With eqns. (3.5) and (3.6) the problem is solved. 

 

 By differentiation of eqn. (3.5) by way of the first eqns. (1.2), the rotation vector is 

𝜙𝑥 =
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿3𝐻2

(𝐿2 + 𝐻2)2
 ]  𝐹 cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) ,                                                                                       

𝜙𝑦 = −
3(1 − 𝜈2)

𝜋2𝐸ℎ3
 [ 

𝐿2𝐻3

(𝐿2 + 𝐻2)2
 ]  𝐹 sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                       (3.7) 

Now, using the second of eqns. (1.2) and eqn. (1.3), the moment components are 

𝑀𝑥𝑥 = −𝑀𝑦𝑦 = −
(1 − 𝜈)𝐹

4
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ] sin ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) ,                                                                     

𝑀𝑥𝑦 = −
𝐹

4
 [ 

𝐿𝐻(𝜈𝐿2 + 𝐻2)

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,                                                                                 (3.8) 

𝑀𝑦𝑥 =
𝐹

4
 [ 

𝐿𝐻(𝐿2 + 𝜈𝐻2)

(𝐿2 + 𝐻2)2
 ] cos ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                                                

Finally, differentiating eqns. (3.5) and using eqns. (1.8), one obtains the components of the shear vector 

𝑉𝑥 =
𝜋𝐹

4
 [ 

𝐻

𝐿2 + 𝐻2
 ]  sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) ,          𝑉𝑦 =

𝜋𝐹

4
 [ 

𝐿

𝐿2 + 𝐻2
 ] cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) .      (3.9) 

Note that both the displacement 𝑢 and the bending moments 𝑀𝑥𝑦 and 𝑀𝑦𝑥 are zero on the boundary so that the 

boundary conditions (3.3) are satisfied. 

 

Now, at the upper right corner of the domain, the normal moment vector ℳ𝑛
− = 𝑀𝑥𝑥 before the corner 

and ℳ𝑛
+ = 𝑀𝑦𝑦 after the corner are, via the first of eqns. (3.8), 

ℳ𝑛
− = −ℳ𝑛

+ = −
(1 − 𝜈)𝐹

4
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ]                                                                                            (3.10) 

so that the corner force (at the upper right corner) is 

ℳ𝑛
− − ℳ𝑛

+ = −
(1 − 𝜈)𝐹

2
 [ 

𝐿2𝐻2

(𝐿2 + 𝐻2)2
 ] .                                                                                              (3.11) 

 

4. Example in Polar Coordinates 
 

 Here a problem in polar coordinates is solved, which problem later will be solved numerically in §9 with 

the finite element method. Specifically, below in Fig. 2 is shown the domain of a quarter-annular plate. The 

distributed load 𝑞 is zero. The boundaries at 𝜃 = 0 and 𝜃 = 𝜋 2⁄  are simply supported, i.e., 

𝑢 = 0 ,          ℳ𝑡 = 0 ,                                                                                                                                       (4.1) 
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while the inner radius 𝑟 = 𝑎 is built in, i.e., 

𝑢 = 𝜙𝑡 = 0 .                                                                                                                                                       (4.2) 

A transverse sinusoidal edge traction is applied to the outer radius 𝑟 = 𝑏, viz., 

ℳ𝑡 = 0 ,          𝑉̅𝑛 =
2𝐹

𝑏
sin4𝜃 ,                                                                                                                      (4.3) 

where 𝐹 > 0 is the total force of the traction over the interval 𝜃 ∈ [ 0 , 𝜋 4⁄  ]. 
 

 

          This problem may be solved with a displacement of 

the form 

𝑢 = 𝑓(𝑟) sin 4𝜃 .                                                                   (4.4) 

With eqn. (4.4) and the first of eqns. (1.10), the components of the 

rotation vector are 

𝜙𝑟 =
4

𝑟
 𝑓 cos 4𝜃 ,          𝜙𝜃 = −𝑓′ sin4𝜃 .                     (4.5) 

Next, via the second of eqns. (1.10) and Hooke’s Law, the moments 

are 

𝑀𝑟𝑟 = −𝑀𝜃𝜃 =
𝐸ℎ3

3(1 + 𝜈)
 ( 

1

𝑟
𝑓′ −

1

𝑟2
𝑓 ) cos 4𝜃,                    

𝑀𝑟𝜃 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑓′′ +

𝜈

𝑟
𝑓′ −

16𝜈

𝑟2
𝑓 ) sin 4𝜃 ,   (4.6) 

Figure 2. The quarter-annular plate 

               under consideration. 𝑀𝜃𝑟 =
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝜈𝑓′′ +

1

𝑟
𝑓′ −

16

𝑟2
𝑓 ) sin4𝜃 .                

 

Finally, eqn. (1.11) gives the components of the shear vector 

𝑉𝑟 = −
𝐸ℎ3

12(1 − 𝜈2)
 ( 𝑓′′′ +

1

𝑟
𝑓′′ −

17

𝑟2
𝑓′ +

32

𝑟3
𝑓 ) sin 4𝜃 ,                                                                                     

𝑉𝜃 = −
𝐸ℎ3

3(1 − 𝜈2)
 ( 

1

𝑟
𝑓′′ +

1

𝑟2
𝑓′ −

16

𝑟3
𝑓 ) cos 4𝜃 .                                                                                       (4.7) 

 

 On the boundary, the Kirchhoff shear forces are 

𝑟 = 𝑏 ⇒   𝑉̅𝑛 = 𝑉𝑟 −
1

𝑟
 
d𝑀𝑟𝑟

d𝜃
 ,            𝜃 = 0 ⇒   𝑉̅𝑛 = −𝑉𝜃 −

d𝑀𝜃𝜃

d𝑟
 ,                                                                     

𝜃 = 𝜋 2⁄  ⇒   𝑉̅𝑛 = 𝑉𝜃 +
d𝑀𝜃𝜃

d𝑟
 ,         𝑟 = 𝑎 ⇒   𝑉̅𝑛 = −𝑉𝑟 +

1

𝑟
 
d𝑀𝑟𝑟

d𝜃
 ,                                                       (4.8) 

or, respectively, for 𝑟 = 𝑏, 𝜃 = 0, 𝜃 = 𝜋 2⁄  and 𝑟 = 𝑎, 

𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑓′′′ +

1

𝑏
𝑓′′ −

(33 − 16𝜈)

𝑏2
𝑓′ +

16(3 − 𝜈)

𝑏3
𝑓 ] sin4𝜃 ,                                                       

𝑉̅𝑛 =
𝐸ℎ3

12(1 − 𝜈2)
 [ 

4(2 − 𝜈)

𝑟
𝑓′′ −

4(1 − 2𝜈)

𝑟2
𝑓′ −

8(7 + 𝜈)

𝑟3
𝑓 ] ,                                                                          
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𝑉̅𝑛 = −
𝐸ℎ3

12(1 − 𝜈2)
 [ 

4(2 − 𝜈)

𝑟
𝑓′′ −

4(1 − 2𝜈)

𝑟2
𝑓′ −

8(7 + 𝜈)

𝑟3
𝑓 ] ,                                                            (4.9) 

𝑉̅𝑛 =
𝐸ℎ3

12(1 − 𝜈2)
 [ 𝑓′′′ +

1

𝑎
𝑓′′ −

(33 − 16𝜈)

𝑎2
𝑓′ +

16(3 − 𝜈)

𝑎3
𝑓 ] sin4𝜃 .                                                          

 

 Now, substituting the displacement (4.4) into the governing equation ∇4𝑢 = 0, see eqn. (1.12), one 

obtains the differential equation 

𝑓′′′′ +
2

𝑟
𝑓′′′ −

33

𝑟2
𝑓′′ +

33

𝑟3
𝑓′ +

192

𝑟4
𝑓 = 0 .                                                                                                    (4.10) 

The solution to eqn. (4.10) is 

𝑓 =
𝑘1

𝑟4
+

𝑘2

𝑟2
+ 𝑘3𝑟

4 + 𝑘4𝑟
6 ,                                                                                                                                            

𝑓′ = −4
𝑘1

𝑟5
− 2

𝑘2

𝑟3
+ 4𝑘3𝑟

3 + 6𝑘4𝑟
5 ,                                                                                                                            

𝑓′′ = 20
𝑘1

𝑟6
+ 6

𝑘2

𝑟4
+ 12𝑘3𝑟

2 + 30𝑘4𝑟
4 ,                                                                                                         (4.11) 

𝑓′′′ = −120
𝑘1

𝑟7
− 24

𝑘2

𝑟5
+ 24𝑘3𝑟 + 120𝑘4𝑟

3 .                                                                                           

Looking at eqns. (4.4) and (4.6), one sees that the boundary conditions (4.1) are satisfied identically. The 

conditions, respectively, 𝑢(𝑎, 𝜃) = 0, 𝜙𝑡 = −𝜙𝜃(𝑎, 𝜃) = 0, ℳ𝑡 = 𝑀𝑟𝜃(𝑏, 𝜃) = 0 and 𝑉̅𝑛 = (2𝐹 𝑏⁄ ) sin4𝜃 yield 

the system of equations to satisfy the boundary conditions (4.2) and (4.3), viz., 

[
 
 
 

 

1 𝑎4⁄              1 𝑎2⁄

−2 𝑎5⁄             − 1 𝑎3⁄
𝑎4              𝑎6

2𝑎3                3𝑎5

10(1 − 𝜈) 𝑏6⁄ 3(1 − 3𝜈) 𝑏4⁄

−5(1 − 𝜈) 𝑏6⁄ −3(2 − 𝜈) 𝑏4⁄

6(1 − 𝜈)𝑏2 5(3 − 𝜈)𝑏4

3(1 − 𝜈)𝑏2 −5𝜈𝑏4

 

]
 
 
 

 [ 

𝑘1

𝑘2

𝑘3

𝑘4

 ] = [ 

0
0
0

3(1 − 𝜈2)𝐹 (2𝐸ℎ3)⁄

 ] . (4.12) 

Using the constants 

𝐸 = 3.0 × 107 psi ,     𝜈 = 0.3 ,     ℎ = 1.0 in ,     𝐹 = 10 000 lb ,     𝑎 = 120 in ,     𝑏 = 360 in ,        (4.13) 

the solution to eqn. (4.12) is 

𝑘1 = 1.666 591 940 231 4806 × 108 ,             𝑘2 = −1.547 802 450 020 5023 × 104 ,                              

𝑘3 = 1.354 435 354 756 7996 × 10−9 ,          𝑘4 = −3.252 532 373 598 9290 × 10−15               (4.14) 

which constants solve the problem at hand. 

 

As a final comment, for the constants (4.13) and (4.14), the values of the four corner forces are 

 

Corner Force at (𝑟, 𝜃) Value (lb) 

(𝑀𝜃𝜃 − 𝑀𝑟𝑟)(𝑎, 0) 0 

(𝑀𝜃𝜃 − 𝑀𝑟𝑟)(𝑏, 0) −3935.94 

(𝑀𝑟𝑟 − 𝑀𝜃𝜃)(𝑏, 𝜋 2⁄ ) 3935.94 

(𝑀𝑟𝑟 − 𝑀𝜃𝜃)(𝑎, 𝜋 2⁄ ) 0 
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5. A 𝑪𝟏 18–Degree of Freedom Triangle Element 
 

 

          At left, in Fig. 3, is shown a 21–degree of freedom triangle 

finite element. The vertex nodes 0, 1 and 2 each possess six 

degrees of freedom, viz., 𝑢, 𝑢,𝑥, 𝑢,𝑦, 𝑢,𝑥𝑥, 𝑢,𝑥𝑦 and 𝑢,𝑦𝑦. The three 

face nodes 3, 4 and 5 are located at the face midpoints, and they 

each possess a single degree of freedom 𝑢,𝑛, i.e., the normal 

derivative in the outward direction. Denoting the 21 degrees of 

freedom as 𝑢𝐼, which is the element displacement vector, the 

displacement 𝑢 in the interior of the element is interpolated via 

𝑢 = 𝑆𝐼𝑢𝐼  ,                                                       (5.1) 

where 𝑆𝐼 are the so-called shape functions. The shape functions 

may be written as 

𝑆𝐼 = 𝑏𝐼𝐽𝑡𝐽          (𝐼, 𝐽) ∈ (0,20)  ,               (5.2) 

Figure 3. The 21–degree of freedom 

               triangle as explained in the text. 

 

where 𝑡𝐽 are the terms of the complete fifth-order polynomial, i.e., 

 

𝑡𝐽 =

[
 
 
 
 
 

 

𝑡0 0 0
𝑡1 𝑡2  0
𝑡3  𝑡4   𝑡5

0 0 0
0 0 0
0 0 0

𝑡6 𝑡7 𝑡8

𝑡10 𝑡11 𝑡12

𝑡15 𝑡16 𝑡17

𝑡9 0 0
𝑡13 𝑡14 0
𝑡18 𝑡19 𝑡20

 

]
 
 
 
 
 

=

[
 
 
 
 
 
 

 

1 0 0
𝑥 𝑦      0

𝑥2 𝑥𝑦      𝑦2

0 0 0
0 0 0
0 0 0

𝑥3 𝑥2𝑦   𝑥𝑦2

𝑥4 𝑥3𝑦 𝑥2𝑦2

𝑥5 𝑥4𝑦 𝑥3𝑦2

𝑦3 0 0

𝑥𝑦3 𝑦4 0

𝑥2𝑦3 𝑥𝑦4 𝑦5

 

]
 
 
 
 
 
 

  .                       (5.3) 

The matrix of coefficients 𝑏𝐼𝐽 in eqn. (5.2) is found by inverting a 21 × 21 matrix. In practice, the coordinates in 

eqn. (5.3) are translated so that node 0 is at the origin, which avoids any numerical ill-conditioning. 
 

 

          The three mid-side nodes are somewhat of a nuisance, so these 

three degrees of freedom are removed from the element by using the 

following procedure. The normal derivative is assumed to be cubic 

along the faces of the element, i.e., 

𝑢,𝑛 = 𝑓0𝑢,𝑛
0 + 𝑓1𝑢,𝑛𝑡

0 + 𝑓2𝑢,𝑛
1 + 𝑓3𝑢,𝑛𝑡

1   ,        (5.4) 

Figure 4. A cubic variation of 𝑢,𝑛 

               along a face of the triangle. 

 

where the derivatives are in the boundary 𝑛𝑡–system, and 
 

𝑓0 =
1

4
(2 − 3𝜉 + 𝜉3)  ,          𝑓1 =

𝐿

8
(1 − 𝜉 − 𝜉2 + 𝜉3)  ,                                                                                    

𝑓2 =
1

4
(2 + 3𝜉 − 𝜉3)  ,          𝑓3 =

𝐿

8
(−1 − 𝜉 + 𝜉2 + 𝜉3)  .                                                                      (5.5) 

In eqns. (5.5), 𝜉 ∈ (−1,1) is the normalized coordinate along the element face, as pictured in Fig. 4. The length of 

the element face is 𝐿. Evaluating eqns. (5.5) at 𝜉 = 0, i.e., at the mid-node, 

𝑓0 =
1

2
  ,          𝑓1 =

𝐿

8
  ,          𝑓2 =

1

2
  ,          𝑓3 = −

𝐿

8
  ,                                                                            (5.6) 

and using 𝑢,𝑛 = 𝑛𝑖𝑢,𝑖 and 𝑢,𝑛𝑡 = 𝑛𝑖𝑡𝑗𝑢,𝑖𝑗 (𝐧 and 𝐭 are the unit normal and tangent vectors), one obtains that 

𝑢18 = 𝐴18 𝐼𝑢𝐼  ,          𝑢19 = 𝐴19 𝐼𝑢𝐼  ,          𝑢20 = 𝐴20 𝐼𝑢𝐼  ,          𝐼 ∈ (0,17)                                           (5.7) 

where 18, 19, and 20 are the degree of freedom numbers of the mid-node normal derivates, and 
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𝐴18 𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0
𝑛𝑥

0 2⁄

𝑛𝑦
0 2⁄

𝐿0𝑛𝑥
0𝑡𝑥

0 8⁄

𝐿0(𝑛𝑥
0𝑡𝑦

0 + 𝑛𝑦
0𝑡𝑥

0) 8⁄

𝐿0𝑛𝑦
0𝑡𝑦

0 8⁄

0
𝑛𝑥

0 2⁄

𝑛𝑦
0 2⁄

−𝐿0𝑛𝑥
0𝑡𝑥

0 8⁄

−𝐿0(𝑛𝑥
0𝑡𝑦

0 + 𝑛𝑦
0𝑡𝑥

0) 8⁄

−𝐿0𝑛𝑦
0𝑡𝑦

0 8⁄

0
0
0
0
0
0

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ,   𝐴19 𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0
0
0
0
0
0
0

𝑛𝑥
1 2⁄

𝑛𝑦
1 2⁄

𝐿1𝑛𝑥
1𝑡𝑥

1 8⁄

𝐿1(𝑛𝑥
1𝑡𝑦

1 + 𝑛𝑦
1𝑡𝑥

1) 8⁄

𝐿1𝑛𝑦
1𝑡𝑦

1 8⁄

0
𝑛𝑥

1 2⁄

𝑛𝑦
1 2⁄

−𝐿1𝑛𝑥
1𝑡𝑥

1 8⁄

−𝐿1(𝑛𝑥
1𝑡𝑦

1 + 𝑛𝑦
1𝑡𝑥

1) 8⁄

−𝐿1𝑛𝑦
1𝑡𝑦

1 8⁄

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ,   𝐴20 𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0
𝑛𝑥

2 2⁄

𝑛𝑦
2 2⁄

−𝐿2𝑛𝑥
2𝑡𝑥

2 8⁄

−𝐿2(𝑛𝑥
2𝑡𝑦

2 + 𝑛𝑦
2𝑡𝑥

2) 8⁄

−𝐿2𝑛𝑦
2𝑡𝑦

2 8⁄

0
0
0
0
0
0
0

𝑛𝑥
2 2⁄

𝑛𝑦
2 2⁄

𝐿2𝑛𝑥
2𝑡𝑥

2 8⁄

𝐿2(𝑛𝑥
2𝑡𝑦

2 + 𝑛𝑦
2𝑡𝑥

2) 8⁄

𝐿2𝑛𝑦
2𝑡𝑦

2 8⁄

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  . (5.8) 

In eqns. (5.8) the superscripts on 𝐿, 𝑛𝑥, 𝑛𝑦, 𝑡𝑥 and 𝑡𝑦 refer to the face numbers in Fig. 3. Finally, via eqns. (5.7) 

and (5.8), the interpolation and shape functions become 

𝑢 = 𝑆𝐼𝑢𝐼  ,          𝑆𝐼 = 𝑐𝐼𝐽𝑡𝐽  ,          𝐼 ∈ (0,17)  ,          𝐽 ∈ (0,20)  ,                                                                                           

𝑐𝐼𝐽 = 𝑏𝐼𝐽 + 𝐴18 𝐼𝑏18 𝐽 + 𝐴19 𝐼𝑏19 𝐽 + 𝐴20 𝐼𝑏20 𝐽  .                                                                                                            (5.9) 

Thus, with eqns. (5.9), the element now only has nodes at the vertices, leaving an 18−degree of freedom element. 

Finally, note that the gradients of 𝑢 are interpolated as 

𝑢,𝑖 = 𝑆,𝑖
𝐼𝑢𝐼  ,          𝑢,𝑖𝑗 = 𝑆,𝑖𝑗

𝐼 𝑢𝐼  ,          𝑆,𝑖
𝐼 = 𝑐𝐼𝐽𝑡,𝑖

𝐽  ,          𝑆,𝑖𝑗
𝐼 = 𝑐𝐼𝐽𝑡,𝑖𝑗

𝐽   ,          etc.                                                    (5.10) 

 

 Turning attention to the Principle of Virtual Work (2.9), interpolate the virtual displacement 𝑢∗ and virtual 

rotation 𝜙𝑖
∗ as 

𝑢∗ = 𝑆𝐼𝑢∗𝐼  ,          𝜙𝑖
∗ = 𝜀𝑖𝑘𝑢,𝑘

∗ = 𝜀𝑖𝑘𝑆,𝑘
𝐼 𝑢∗𝐼      ⇒      𝜙𝑡

∗ = 𝑡𝑖𝜙𝑖
∗ = 𝑡𝑖𝜀𝑖𝑘𝑆,𝑘

𝐼 𝑢∗𝐼  ,                                                     (5.11) 

where 𝑢∗𝐼 are the nodal values of 𝑢∗. Substitution of the interpolations (5.11) into eqn. (2.9) yields 

𝑢∗𝐼 ∫𝑆,𝑘𝑗
𝐼 𝐶𝑗𝑘𝑝𝑞𝑢,𝑞𝑝 d𝐴

0

𝐴

= 𝑢∗𝐼 ∮𝑡𝑖𝜀𝑖𝑘𝑆,𝑘
𝐼 ℳ𝑡 d𝑡

0

𝑡

+ 𝑢∗𝐼 ∮𝑆𝐼𝑉̅𝑛 d𝑡

0

𝑡

+ 𝑢∗𝐼 ∫𝑆𝐼𝑞 d𝐴

0

𝐴

  ,                                               (5.12) 

or since 𝑢∗𝐼 is arbitrary 

∫𝑆,𝑘𝑗
𝐼 𝐶𝑗𝑘𝑝𝑞𝑢,𝑞𝑝 d𝐴

0

𝐴

= ∮𝑡𝑖𝜀𝑖𝑘𝑆,𝑘
𝐼 ℳ𝑡 d𝑡

0

𝑡

+ ∮𝑆𝐼𝑉̅𝑛 d𝑡

0

𝑡

+ ∫𝑆𝐼𝑞 d𝐴

0

𝐴

  .                                                                          (5.13) 

Now, putting the interpolations 𝑢,𝑞𝑝 = 𝑆,𝑞𝑝
𝐽 𝑢𝐽 into eqn. (5.13) gives the element stiffness relation 

𝐾𝐼𝐽𝑢𝐽 = 𝑓ℳ
𝐼 + 𝑓𝑉

𝐼 + 𝑓𝑞
𝐼 = 𝑓𝐼  ,                                                                                                                                            (5.14) 

where  
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𝐾𝐼𝐽 = ∫𝑆,𝑘𝑗
𝐼 𝐶𝑖𝑗𝑝𝑞𝑆,𝑞𝑝

𝐽
 d𝐴

0

𝐴

  ,          𝑓ℳ
𝐼 = ∮𝑡𝑖𝜀𝑖𝑘𝑆,𝑘

𝐼 ℳ𝑡 d𝑡

0

𝑡

  ,          𝑓𝑉
𝐼 = ∮𝑆𝐼𝑉̅𝑛 d𝑡

0

𝑡

  ,          𝑓𝑞
𝐼 = ∫𝑆𝐼𝑞 d𝐴

0

𝐴

  .   (5.15) 

 

 

 

Figure 5. Quadrature points. The blue points are for 

                area integrations and the red points are for 

                linear boundary integrations. 

Figure 6. Schematic of prescribed non-zero boundary 

                values of ℳ𝑡 and 𝑉̅𝑛. 

 

The area integrals in eqns. (5.15) are calculated numerically with the 12-point quadrature rule of 

Dunavant, the quadrature points of which rule are depicted by the blue points in Fig. 5 above. The 12-point rule 

will integrate a sixth-order polynomial exactly. In the integral expression for 𝑓𝑞
𝐼, 𝑞 is interpolated through the 

element area via 𝑞 = 𝑁𝐼𝑞𝐼, where 𝑞𝐼 are the three nodal values of 𝑞, and 𝑁𝐼 are the usual linear shape functions 

(based on area coordinates) of the triangle. The linear integrations (along the boundaries) in eqns. (5.15) are 

performed using the 4-point Gauss-Legendre quadrature rule, which rule will integrate a seventh order polynomial 

exactly. The quadrature points for this rule are depicted by the red points above in Fig. 5. 

 

Figure 6 above shows an element face where non-zero boundary values of ℳ𝑡 and/or 𝑉̅𝑛 are prescribed, 

where 𝜉 ∈ (−1,1) is the normalized coordinate along the element face. If ℳ𝑡 is prescribed, then it is represented 

by the cubic function 

ℳ𝑡 = 𝑚0ℳ𝑡
0 + 𝑚1ℳ𝑡

1 + 𝑚2ℳ𝑡
2 + 𝑚3ℳ𝑡

3  ,                                                                                                               (5.16) 

where ℳ𝑡
𝐼 are the values of ℳ𝑡 at four equally spaced points along the element face (as depicted in Fig. 6), and 

𝑚0 =
1

16
(−1 + 𝜉 + 9𝜉2 − 9𝜉3)  ,         𝑚1 =

9

16
(1 − 3𝜉 − 𝜉2 + 3𝜉3)  ,                                                                             

𝑚2 =
9

16
(1 + 3𝜉 − 𝜉2 − 3𝜉3)  ,            𝑚3 =

1

16
(−1 − 𝜉 + 9𝜉2 + 9𝜉3)  .                                                            (5.17) 

Similarly, if 𝑉̅𝑛 is prescribed, then it is represented by the quadratic function 

𝑉̅𝑛 = 𝑣0𝑉̅𝑛
0 + 𝑣1𝑉̅𝑛

1 + 𝑣2𝑉̅𝑛
2  ,                                                                                                                                             (5.18) 

where 𝑉̅𝑛
𝐼 are the values of 𝑉̅𝑛 at three equally spaced points along the element face, and 

𝑣0 =
1

2
(−𝜉 + 𝜉2)  ,          𝑣1 = 1 − 𝜉2  ,          𝑣2 =

1

2
(𝜉 + 𝜉2)  .                                                                               (5.19) 

 

 At this point, it is worth demonstrating that this element exhibits 𝐶1 continuity, i.e., the value of 𝑢,𝑛 is 

continuous across adjoining elements. If an element does not possess 𝐶1 continuity, then numerical results 

obtained for plate theory will not converge to the exact solution. This is because the integrand in the first integral 

of eqns. (5.13) is not defined on the boundaries of the element. Notwithstanding, Fig. 7 below shows two 

adjoining triangle elements. In the figure: the red numbers are the element numbers; the blue numbers are the 

element local node numbers; and the black numbers, the global node numbers. A global displacement vector 𝐮𝑔, 
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𝐮𝑔 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

23
15
16
21
13
2
10
12
24
5
8
14
4
11
19
6
3
7
9
17
20
18
22
1

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

shown in Fig. 8, was applied to the assemblage of two elements. It contains the 

integers 1 through 24 listed in random order. Figure 9 below shows the variation of 

𝑢 along the line running from global node 1 to global node 2. The solid red curve is 

obtained with the shape functions of element 0; and the dashed blue curve, with the 

shape functions of element 1. The two curves coincide, i.e., the element is 𝐶0 

continuous. Figure 10 below shows the variation of the normal derivative 𝑢,𝑛 along 

 
Figure 7 (directly above). An assembly of two triangle elements as explained in the 

                                          text. 

Figure 8 (at left). The global displacement vector applied to the assemblage of 

                             elements in Fig. 7. 
 

  
Figure 9. Variation of 𝑢 along the adjoining boundary 

               of the two elements, as described in the text. 

Figure 10. Variation of 𝑢,𝑛 along the adjoining 

                  boundary of the two elements, as described 

                  in the text. 
 

the line running from global node 1 to global node 2. The direction of the normal derivative is from element 0 to 

element 1. Once again, the solid red curve is obtained with the shape functions of element 0; and the dashed blue 

curve, with those of element 1. The two curves coincide, i.e., the element is 𝐶1 continuous. 
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6. A 𝑪𝟏 24–Degree of Freedom Quadrilateral Element 
 

 

          At left, in Fig. 11, is shown a 30–degree of freedom 

quadrilateral element, which, in fact, is just an assemblage of four 

triangle elements. The central node is at the intersection of the 

quadrilateral’s diagonals, and in the figure: the black numbers are 

the local node numbers of the quadrilateral; the blue numbers, the 

local node numbers of the triangles; and the red numbers, the 

triangle numbers. The quadrilateral stiffness relation is then the 

assembly of the four triangle’s stiffness relations. To remove the 

central node 4, write the quadrilateral stiffness relation in terms of 

sub-matrices 

[ 
𝐊24×24 𝐋24×6

𝐌6×24 𝐍6×6
 ] [ 

𝐮24×1

𝐯6×1
 ] = [ 

𝐟24×1

𝐠6×1
 ]  ,            (6.1) 

Figure 11. Quadrilateral element as 

                 described in the text. 

 

where 𝐯6×1 contains the displacement degrees of freedom of the 
 

central node. Solving for 𝐯, one obtains 

𝐰 = 𝐍−1𝐠  ,          𝐏 = 𝐍−1𝐌     ⇒      𝐯 = 𝐰 − 𝐏𝐮  .                                                                                    (6.2) 

Substituting this expression for 𝐯 back into eqn. (6.1) gives 

𝐐 = 𝐋𝐏  ,          𝐳 = 𝐋𝐰     ⇒      [ 𝐊 − 𝐐 ] 𝐮 = 𝐟 − 𝐳 ,                                                                                   (6.3) 

the last equation of which is the 24 × 24 stiffness relation of the four-noded quadrilateral element (again, with the 

central node removed). 
 

 

          Sometimes, to apply the displacement boundary conditions of the 

problem, a node will need to be transformed from the 𝑥𝑦–system to the 

boundary 𝑛𝑡–system. The unit vectors in Fig. 12 at left are 

𝐧 = cos𝛼 𝐞𝑥 + sin𝛼 𝐞𝑦 = 𝑛𝑥𝐞𝑥 + 𝑛𝑦𝐞𝑦                                    

𝐭 = −sin𝛼 𝐞𝑥 + cos𝛼 𝐞𝑦 = 𝑡𝑥𝐞𝑥 + 𝑡𝑦𝐞𝑦 .                      (6.4) 

Figure 12. The 𝑥𝑦– and 

                  𝑛𝑡–systems. 
Now, define the matrices 𝐓1, 𝐓𝟐 and 𝐓 in terms of the unit vectors 𝐧 and 𝐭 of 

eqn. (6.4) via   
 

𝐓1 = [ 
𝑛𝑥 𝑛𝑦

𝑡𝑥 𝑡𝑦
 ]  ,           𝐓2 = [ 

𝑛𝑥
2 2𝑛𝑥𝑛𝑦 𝑛𝑦

2

𝑛𝑥𝑡𝑥 𝑛𝑥𝑡𝑦 + 𝑛𝑦𝑡𝑥 𝑛𝑦𝑡𝑦

𝑡𝑥
2 2𝑡𝑥𝑡𝑦 𝑡𝑦

2

 ]  ,          𝐓 = [ 

11×1 𝟎1×2 𝟎1×3

𝟎2×1 𝐓2×2
1 𝟎2×3

𝟎3×1 𝟎3×2 𝐓3×3
2

 ]   (6.5) 

so that the nodal transformations between the two coordinate systems are 

𝐮𝑛𝑡 = 𝐓𝐮𝑥𝑦  ,          𝐮𝑥𝑦 = 𝐓−1𝐮𝑛𝑡 .                                                                                                                   (6.6) 

In eqns. (6.6), 𝐮𝑥𝑦 are the six displacement components of a node in the 𝑥𝑦–system, and 𝐮𝑛𝑡 are the six 

displacement components of a node in the 𝑛𝑡–system. Next, write the stiffness relation (6.3) of the quadrilateral 

in terms of 6 × 6 and 6 × 1 submatrices as 

[ 

𝐊00 𝐊01

𝐊10 𝐊11
𝐊02 𝐊03

𝐊12 𝐊13

𝐊20 𝐊21

𝐊30 𝐊31
𝐊22 𝐊23

𝐊32 𝐊33

 ] 

[
 
 
 
 

 

𝐮𝑥𝑦
0

𝐮𝑥𝑦
1

𝐮𝑥𝑦
2

𝐮𝑥𝑦
3

 

]
 
 
 
 

=

[
 
 
 
 

 

𝐟𝑥𝑦
0

𝐟𝑥𝑦
1

𝐟𝑥𝑦
2

𝐟𝑥𝑦
3

 

]
 
 
 
 

 .                                                                                                   (6.7) 
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Finally, for example, if node 1 of the element is in the 𝑛𝑡–system, then eqn. (6.7) is transformed as 

[ 

𝐊00 𝐊01𝐓−1

𝐓−𝑇𝐊10 𝐓−𝑇𝐊11𝐓−1
𝐊02 𝐊03

𝐓−𝑇𝐊12 𝐓−𝑇𝐊13

𝐊20       𝐊21𝐓−1

𝐊30       𝐊31𝐓−1
𝐊22      𝐊23

𝐊32      𝐊33

 ] 

[
 
 
 
 

 

𝐮𝑥𝑦
0

𝐮𝑛𝑡
1

𝐮𝑥𝑦
2

𝐮𝑥𝑦
3

 

]
 
 
 
 

=

[
 
 
 
 

 

𝐟𝑥𝑦
0

𝐟𝑛𝑡
1

𝐟𝑥𝑦
2

𝐟𝑥𝑦
3

 

]
 
 
 
 

 ,                                                            (6.8) 

where 

𝐟𝑛𝑡
1 = 𝐓−𝑇𝐟𝑥𝑦

1   .                                                                                                                                                       (6.9) 

 

7. Recovery of the Internal Force Resultants 
 

The components of the moment tensor 𝑀𝑖𝑗 are readily calculated at the nodes from the nodal values of 

𝑢,𝑥𝑥, 𝑢,𝑥𝑦 and 𝑢,𝑦𝑦. 

 

When calculating the components of the internal shear vector 𝑉𝑖, the usual approach would be to use the 

third gradients of the shape functions (5.9) in the interiors of the triangles. But, for some problems, especially 

ones which contain curved boundaries, the results can be unacceptably inaccurate. Consequently, here an alternate 

approach is used. 

 

          Figure 13 at left shows a bi-linear differentiation cell in normalized 

𝝃–space, with 𝜉𝑖 ∈ (−1,1). In physical 𝐱–space, the cell corresponds to the 

quadrilateral element in Fig. 11. The shape functions 𝑆𝐼 of the cell are 

𝑆0 = 𝑓0(𝜉0)𝑓
0(𝜉1)  ,          𝑆

1 = 𝑓1(𝜉0)𝑓
0(𝜉1)  ,                             

𝑆2 = 𝑓0(𝜉0)𝑓
1(𝜉1)  ,          𝑆

3 = 𝑓1(𝜉0)𝑓
1(𝜉1)  ,                  (7.1) 

where 

𝑓0(𝜉) =
1

2
(1 − 𝜉)  ,          𝑓1(𝜉) =

1

2
(1 + 𝜉)  .                      (7.2) 

Figure 13. Differentiation cell 

                 in 𝝃–space. 

The mapping from 𝝃–space to 𝐱–space is given by 

 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼 ,                                                                                                                                                                    (7.3) 

where 𝑥𝑖
𝐼 are the coordinates of the nodes. Now, from eqn. (7.3), 

𝜕𝑥𝑖

𝜕𝜉𝛼
≡ 𝐴𝑖𝛼 = 𝑆,𝛼

𝐼 𝑥𝑖
𝐼      ⇒      

𝜕𝜉𝛼

𝜕𝑥𝑖
= 𝐴𝛼𝑖

−1  ,          𝑆,𝑖
𝐼 = 𝑆,𝛼

𝐼 𝐴𝛼𝑖
−1  .                                                                         (7.4) 

Denoting the nodal values of the moment tensor as 𝑀𝑖𝑗
𝐼 , interpolate 𝑀𝑖𝑗 within the cell as 𝑀𝑖𝑗 = 𝑆𝐼𝑀𝑖𝑗

𝐼 . Then 

eqns. (1.6) yield the components 𝑉𝑖, viz., 

𝑉𝑥 = 𝑆,𝑥
𝐼 𝑀𝑥𝑦

𝐼 + 𝑆,𝑦
𝐼 𝑀𝑦𝑦

𝐼   ,          𝑉𝑦 = −𝑆,𝑥
𝐼 𝑀𝑥𝑥

𝐼 − 𝑆,𝑦
𝐼 𝑀𝑦𝑥

𝐼   .                                                                                 (7.5) 

 

8. Numerical Example in Cartesian Coordinates 
 

 Here the problem presented earlier in §3 is solved numerically. Due to symmetry, only the upper right 

quadrant of Fig. 1 is analyzed. The (symmetry) boundary conditions at 𝑥 = 0 and 𝑦 = 0 are 

𝜙𝑡 = 0  ,          𝑉̅𝑛 = 0  .                                                                                                                                            (8.1) 

On the boundaries 𝑥 = 𝐿 2⁄  and 𝑦 = 𝐻 2⁄  the (simply supported) boundary conditions are as per eqns. (3.3). The 

constants used in the analysis are 
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𝐸 = 3 × 107 psi  ,     𝜈 = 0.3  ,     ℎ = 1.0 in  ,     𝐿 = 360 in  ,     𝐻 = 240 in  ,     𝐹 = 10000 lb  .      (8.2) 
 

 
Figure 14. Grid used in the analysis as explained in the text. 

 

 

          The computational grid used in the analysis is 

pictured above in Fig. 14. It consists of a 36 × 24 

array of nodes, and a 35 × 23 array of quadrilateral 

elements. 

 

          Figures 15 through 18 show the calculated 

results at (or near) the left boundary of the domain 

𝑥 = 0. In all graphs which follow: the solid curves 

represent the exact solution; and the plotted points, the 

numerical results. Figures 15 through 18 show, 

respectively, the results for the displacement, the 

rotation, the moment components, and shear vector. 

Note that in Fig. 18, the results are for a vertical line 

running through the centers of the leftmost column of 

elements, i.e., for the vertical line at 𝑥 = 2.571 in. In 

all cases, for all practicality, the numerical results 

reproduce the exact solution. 

Figure 15. Results for the displacement 𝑢 at 𝑥 = 0.  
 

 Figures 19 through 21 below show the results at (or near) the right boundary of the domain 𝑥 = 180 in. 

These figures concern, respectively, the rotation, moment and shear vector. Also, the shear component in Fig. 21 

is for a vertical line passing through the centers of the rightmost column of elements, i.e., along the vertical line 

𝑥 = 177.428 in. As before, the numerical results basically reproduce the exact solution. 
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Figure 16. Results for the rotation component 𝜙𝑥 at 

                 𝑥 = 0. 

Figure 17. Results for the moment components 

                  𝑀𝑥𝑦 (red) and 𝑀𝑦𝑥 (blue) at 𝑥 = 0. 

  
Figure 18. Results for the shear component 𝑉𝑦 

                  at 𝑥 = 2.571 in. 

Figure 19. Results for the rotation component 𝜙𝑦 

                  at 𝑥 = 180 in. 
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Figure 20. Results for the moment component 𝑀𝑥𝑥 

                 at 𝑥 = 180 in. 

Figure 21. Results for the shear component 𝑉𝑥 

                  at 𝑥 = 177.428 in. 
 

 Figures 22 through 24 below show the results for, respectively, the displacement 𝑢, the rotation vector 𝜙𝑖 

and moment tensor 𝑀𝑖𝑗, all along the vertical line of nodes in the grid located at 𝑥 = 82.286 in. The results for 

the shear vector 𝑉𝑖 in Fig. 25 are for the vertical line running through the centers of the column of elements 

located at 𝑥 = 84.857 in. Once again, effectively, the numerical results reproduce the exact solution. 
 

  
Figure 22. Results for the displacement 𝑢 

                  at 𝑥 = 82.286 in. 

Figure 23. Results for the rotation components 

                  𝜙𝑥 (red) and 𝜙𝑦 (blue) at 𝑥 = 82.286 in. 
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Figure 24. Results for the moment components 

                 𝑀𝑥𝑦 (red), 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) 

                 at 𝑥 = 82.286 in. 

Figure 25. Results for the shear components 𝑉𝑥 (red) 

                  and 𝑉𝑦 (blue) at 𝑥 = 84.857 in. 

 

 Finally, for the corner force located at the upper right corner of the domain, the numerically calculated 

value is −745.4 lb, while the exact value is −745.6 lb, cf., eqn. (3.11), which amounts to a relative error 

of −0.027%. 

 

9. Numerical Example in Polar Coordinates 
 

 
Figure 26. Computational grid used in the analysis, as explained in the text. 
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          The problem solved earlier in §4 is solved here 

numerically. The computational grid used in the 

analysis is shown above in Fig. 26. It consists of a 19 

(radial) × 28 (tangential) array of nodes, and an 18 

(radial) × 27 (tangential) array of quadrilateral 

elements. The constants used in the analysis are as per 

eqn. (4.13) above. 

 

          Figures 27 through 29 show the results at (or 

near) the boundary at 𝜃 = 0. Figures 27 and 28 depict, 

respectively, the results for the rotation and moment at 

𝜃 = 0. Figure 29 depicts the shear vector along the 

radial line running through the centers of the elements 

at the bottom of the computational grid, i.e., along 

𝜃 = 0.009259𝜋. In all the graphs: the solid curves 

represent the exact solution; and the plotted points, the 

numerical solution. As is evident from Fig. 27, the 

Figure 27. Results for rotation component 𝜙𝑥 

                  at 𝜃 = 0. 

numerical results for the rotation are quite accurate. 

The same is true for the moment (Fig.28), except for 

the slight error at the outer radius. Finally, for the 

shear component (Fig. 29), the numerical solution is also quite accurate, again, except for some minor error near 

the outer radius of the domain. 

  
Figure 28. Results for moment component 𝑀𝑥𝑥 

                  at 𝜃 = 0. 

Figure 29. Results for shear component 𝑉𝑦 

                  at 𝜃 = 0.009259𝜋. 
 

 Figures 30 through 33 show the results for, respectively, the displacement 𝑢, the rotation vector 𝜙𝑖, the 

moment tensor 𝑀𝑖𝑗 and shear vector 𝑉𝑖 at (or near) the outer radius of the domain. The results in Figs. 30 

through 32 correspond to the outer radius 𝑟 = 360 in, while the results for the shear vector (Fig. 33) are for the 

circular arc running through the centers of the elements at the outer radius, i.e., along the arc at 𝑟 = 349.2 in. As 

is evident from Figs. 30 through 32, the numerical results for the displacement, rotations and moments are quite 

accurate. As for the shear vector (Fig. 33), while the numerically calculated values do exhibit some error, overall, 

though, their accuracy is still quite acceptable. 
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Figure 30. Results for displacement 𝑢 at 𝑟 = 360 in. Figure 31. Results for rotation components 𝜙𝑥 (red) 

                  and 𝜙𝑦 (blue) at 𝑟 = 360 in. 

  
Figure 32. Results for moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) at 𝑟 = 360 in. 

Figure 33. Results for shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑟 = 349.2 in. 

 

 Figures 34 and 35 below present the results for, respectively, the moment tensor 𝑀𝑖𝑗 at the inner radius of 

the domain 𝑟 = 120 in, and the shear vector 𝑉𝑖 along the circular arc running through the centers of the elements 

at the inner radius, i.e., along 𝑟 = 123.7 in. As is seen from Fig. 34, the magnitudes of the numerically calculated 

bending moments 𝑀𝑥𝑦 and 𝑀𝑦𝑥 are under-estimated somewhat. The numerically calculated shear components 

(Fig. 35) have generally the correct character, but the numerical results disagree with the exact solution by about 

40% at 𝜃 ≈ 𝜋 8⁄  (𝑉𝑥) and 𝜃 ≈ 3𝜋 8⁄  (𝑉𝑦). These results for the shear components 𝑉𝑖 are the most inaccurate part 

of the solution, and the author considers them to be bordering on unacceptable.  
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Figure 34. Results for moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) at 𝑟 = 120 in. 

Figure 35. Results for shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑟 = 123.7 in. 

 

 Figures 36 through 38 below show the results for, respectively, the displacement 𝑢, the rotation vector 𝜙𝑖 

and moment tensor 𝑀𝑖𝑗 along the radial line of nodes located at 𝜃 = 0.1296𝜋. Figure 39 shows the results for the 

shear vector 𝑉𝑖 along the radial line passing through the centers of the quadrilateral elements located at inclination 

𝜃 = 0.1204𝜋. As previously, the numerical results for 𝑢 and 𝜙𝑖 are quite accurate. For the moments 𝑀𝑖𝑗 (Fig. 38), 

there is some slight inaccuracy at the inner and outer radii of the domain in the calculated bending moments 𝑀𝑥𝑦 

and 𝑀𝑦𝑥, but elsewhere the numerical results are quite accurate. As for the shear vector 𝑉𝑖 (Fig. 39), in the interior 

of the domain the numerically calculated values are quite accurate and acceptable. Near the outer radius of the 

domain, though, there is some (somewhat minor) inaccuracy, but near the inner radius, the inaccuracy is very 

large (which is consistent with the results of Fig. 35 above). 

  
Figure 36. Results for displacement 𝑢 

                  at 𝜃 = 0.1296𝜋. 
Figure 37. Results for rotation components 𝜙𝑥 (red) 

                  and 𝜙𝑦 (blue) at 𝜃 = 0.1296𝜋. 
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Figure 38. Results for moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) 

                 at 𝜃 = 0.1296𝜋. 

Figure 39. Results for shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝜃 = 0.1204𝜋. 

 

 Figures 40 through 42 below present the results for, respectively, the displacement 𝑢, rotation vector 𝜙𝑖 

and moment tensor 𝑀𝑖𝑗 along the ring of nodes located at 𝑟 = 234.8 in. In all cases, the numerically calculated 

results are highly accurate. Figure 43 shows the results for the shear vector 𝑉𝑖 along a ring passing through the 

centers of the quadrilaterals located at 𝑟 = 242.1 in, and these numerical results, also, are highly accurate. 

  
Figure 40. Results for displacement 𝑢 at 𝑟 = 234.8 in. Figure 41. Results for rotation components 𝜙𝑥 (red) 

                  and 𝜙𝑦 (blue) at 𝑟 = 234.8 in. 
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Figure 42. Results for moment components 𝑀𝑥𝑦 (red), 

                 𝑀𝑦𝑥 (blue) and 𝑀𝑥𝑥 (purple) 

                 at 𝑟 = 234.8 in. 

Figure 43. Results for shear components 𝑉𝑥 (red) and 

                  𝑉𝑦 (blue) at 𝑟 = 242.1 in. 

 

 Finally, as for the corner forces at: (𝑟, 𝜃) = (𝑏, 0), which force is downward; and at (𝑟, 𝜃) = (𝑏, 𝜋 2⁄ ), 

which force is upward, the numerically calculated magnitudes (are both) 3862.8 lb, and the exact magnitudes are 

3935.9 lb, cf., the table at the end of §4. The relative error is 1.86%. 

 

10. Closing Remarks 
 

 The problem in Cartesian coordinates presented in §8 is easy to solve numerically. In fact, due to the 

rectangular elements, the simpler, 12–degree of freedom tensor product cubic element probably would perform 

just as well. 

 

 The problem in polar coordinates presented in §9, though, is more difficult to solve. While the numerical 

values obtained for the nodal values of the displacement 𝑢, rotation vector 𝜙𝑖 and moment tensor 𝑀𝑖𝑗 are, for the 

most part, highly accurate, the numerical values of the shear vector 𝑉𝑖, in some instances, exhibit significant 

inaccuracy near the boundaries of the domain. Nevertheless, one supposes that using a more refined grid would 

increase the accuracy of the numerically calculated shear vector components. Perhaps also the procedure used in 

§5 to condense out the mid-side nodes is responsible for the inaccurate calculation of the shear components within 

the triangles (by using the third gradients of the shape functions 5.9). While it may be possible that a 12–degree of 

freedom tensor product cubic element formulated in polar coordinates would perform well for this problem, this is 

not an optimal solution, since such an element would be valid only for domains consisting of sectors of annuli. 

 


