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1. Governing Equations 
 

 The stress equilibrium equations are 

𝜎𝑖𝑗,𝑖 = 0 ,                                                                                                                                                                 (1.1) 

where 𝜎𝑖𝑗 is the stress tensor, which is the force intensity acting in the 𝑗−direction on an internal face 

whose normal is the 𝑖–direction. Also, herein, the comma denotes partial differentiation with respect to 

the spatial coordinates. The components of the strain tensor 𝜀𝑖𝑗 are given by 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)  ,                                                                                                                                           (1.2) 

where 𝑢𝑖 is the displacement vector. 

 

 Hooke’s Law is 

𝜎𝑥𝑥 =
1

𝐶(1 − 2𝜈∗)
 [ (1 − 𝜈∗)𝜀𝑥𝑥 + 𝜈∗𝜀𝑦𝑦 ]  ,                                                                                                          

𝜎𝑦𝑦 =
1

𝐶(1 − 2𝜈∗)
 [ (1 − 𝜈∗)𝜀𝑦𝑦 + 𝜈∗𝜀𝑥𝑥 ]  ,                                                                                               (1.3) 

𝜎𝑥𝑦 =
1

𝐶
 𝜀𝑥𝑦  ,                                                                                                                                                                 

or inversely 

𝜀𝑥𝑥 = 𝐶 [ (1 − 𝜈∗)𝜎𝑥𝑥 − 𝜈∗𝜎𝑦𝑦 ]  ,          𝜀𝑦𝑦 = 𝐶 [ (1 − 𝜈∗)𝜎𝑦𝑦 − 𝜈∗𝜎𝑥𝑥 ]  ,          𝜀𝑥𝑦 = 𝐶𝜎𝑥𝑦  ,      (1.4) 

where 

𝐶 =
1 + 𝜈

𝐸
  ,     𝜈∗ = 𝜈  (plane strain) ,     𝜈∗ =

𝜈

1 + 𝜈
  (plane stress).                                                 (1.5) 

In eqns. (1.5), 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. Also, 

plane strain: 𝜀𝑧𝑧 = 0  , 𝜎𝑧𝑧 = 𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)            

plane stress: 𝜎𝑧𝑧 = 0  , 𝜀𝑧𝑧 = −
𝜈

1 − 𝜈
(𝜀𝑥𝑥 + 𝜀𝑦𝑦)

  .                                                                          (1.6) 

Finally, eqns. (1.3) may be written in tensorial form as 

𝜎𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙𝜀𝑘𝑙   ,          𝐿𝑖𝑗𝑘𝑙 =
1

𝐶
 [ 𝐼𝑖𝑗𝑘𝑙 +

𝜈∗

1 − 2𝜈∗
𝛿𝑖𝑗𝛿𝑘𝑙  ]  ,          𝐼𝑖𝑗𝑘𝑙 =

1

2
 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙)  ,         (1.7) 

where 𝛿𝑖𝑗 is the two-dimensional identity matrix (or Kronecker delta). 

 

 In polar coordinates, the stress equilibrium equations (1.1) are 

𝜎𝑟𝑟,𝑟 +
1

𝑟
𝜎𝑟𝜃,𝜃 +

1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 0  ,          𝜎𝑟𝜃,𝑟 +

1

𝑟
𝜎𝜃𝜃,𝜃 +

2

𝑟
𝜎𝑟𝜃 = 0 .                                             (1.8) 

Hooke’s Law in polar coordinates is the same as eqns. (1.3): just make the replacements 𝑥 → 𝑟 

and 𝑦 → 𝜃. In polar coordinates the strain-displacement relations (1.2) are 

𝜀𝑟𝑟 = 𝑢𝑟,𝑟  ,          𝜀𝜃𝜃 =
1

𝑟
𝑢𝜃,𝜃 +

1

𝑟
𝑢𝑟  ,          𝜀𝑟𝜃 =

1

2
( 

1

𝑟
𝑢𝑟,𝜃 + 𝑢𝜃,𝑟 −

1

𝑟
𝑢𝜃 )  .                                (1.9) 
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2. Principle of Virtual Work 
 

 Multiply the equilibrium equation (1.1) by a once differentiable vector field 𝑢𝑗
∗ (the so-called 

virtual displacement) to obtain 

𝑢𝑗
∗𝜎𝑖𝑗,𝑖 = 0 .                                                                                                                                                          (2.1) 

By the product rule of differentiation (𝑢𝑗
∗𝜎𝑖𝑗),𝑖

= 𝑢𝑗,𝑖
∗ 𝜎𝑖𝑗 + 𝑢𝑗

∗𝜎𝑖𝑗,𝑖, which when put into eqn. (2.1) yields 

𝑢𝑗,𝑖
∗ 𝜎𝑖𝑗 = (𝑢𝑗

∗𝜎𝑖𝑗),𝑖
  .                                                                                                                                            (2.2) 

Next, by using Hooke’s Law (1.7) and the symmetries of 𝐿𝑖𝑗𝑘𝑙, eqn. (2.2) is 

𝑢𝑗,𝑖
∗ 𝐿𝑖𝑗𝑘𝑙𝑢𝑙,𝑘 = (𝑢𝑗

∗𝜎𝑖𝑗),𝑖
 .                                                                                                                                  (2.3) 

Now, integrate eqn. (2.3) over the domain 𝐴 and use the Divergence Theorem to see 

∫𝑢𝑗,𝑖
∗ 𝐿𝑖𝑗𝑘𝑙𝑢𝑙,𝑘  d𝐴

0

𝐴

= ∮𝑢𝑗
∗𝑇𝑗 d𝑡

0

𝑡

 ,                                                                                                                    (2.4) 

which is the Principle of Virtual Work. In eqn. (2.4), 𝑡 is the coordinate around the boundary of 𝐴, and 

𝑇𝑗 = 𝑛𝑖𝜎𝑖𝑗 is the traction vector acting on the boundary (𝐧 is the outward-pointing unit normal vector on 

the boundary). Finally, as seen from eqn. (2.4), admissible boundary conditions for linear elasticity are to 

prescribe either the displacement 𝑢𝑖 or traction 𝑇𝑖 at each point on the boundary. 

 

3. Analytical Example in Cartesian Coordinates 
 

Consider the stress field 

𝜎𝑥𝑥 =
12𝑉

𝐻3
 (𝐿 − 𝑥)𝑦 ,          𝜎𝑦𝑦 = 0 ,          𝜎𝑥𝑦 =

3𝑉

2𝐻3
 (4𝑦2 − 𝐻2) ,                                               (3.1) 

which spans the rectangular domain (a cantilever beam) of Fig. 1 below. Note that 

∫ 𝜎𝑥𝑦(𝐿, 𝑦)d𝑦

𝐻 2⁄

−𝐻 2⁄

= −𝑉 ,          ∫ 𝑦𝜎𝑥𝑥(0, 𝑦)d𝑦

𝐻 2⁄

−𝐻 2⁄

= 𝑉𝐿 ,                                                                   (3.2) 

so that 𝑉 > 0 is the net shear force applied to the ends of the beam, and a moment 𝑉𝐿 is applied to the left 

end of the beam. Also, eqns. (3.1) satisfy the equilibrium eqns. (1.1) identically. With eqns. (3.1) and 

 

Hooke’s Law (1.4), the strain 

components are 

𝜀𝑥𝑥 =
12𝑉𝐶(1 − 𝜈∗)

𝐻3
 (𝐿 − 𝑥)𝑦 ,           

𝜀𝑦𝑦 = −
12𝑉𝐶𝜈∗

𝐻3
 (𝐿 − 𝑥)𝑦 ,        (3.3) 

𝜀𝑥𝑦 =
3𝑉𝐶

2𝐻2
 (4𝑦2 − 𝐻2) .                       

Finally, integrating the strains (3.3), via 

eqns. (1.2), such that 

Figure 1. Domain of a cantilever beam.  
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𝑢𝑥(0,0) = 𝑢𝑦(0,0) = 0 and 𝑢𝑥(0,𝐻 2⁄ ) = 0, one obtains the displacement field 

𝑢𝑥 =
𝑉𝐶

2𝐻3
 [ 12(1 − 𝜈∗)(2𝐿𝑥 − 𝑥2)𝑦 + 4(2 − 𝜈∗)𝑦3 − (2 − 𝜈∗)𝐻2𝑦 ] ,                                                 

𝑢𝑦 = −
𝑉𝐶

2𝐻3
 [ 12𝜈∗(𝐿 − 𝑥)𝑦2 + 4(1 − 𝜈∗)(3𝐿𝑥2 − 𝑥3) + (4 + 𝜈∗)𝐻2𝑥 ] .                                (3.4) 

Consistent boundary conditions are then 

on 𝑥 = 0 ,     
𝑇𝑥 = −

12𝑉𝐿

𝐻3
 𝑦                  

𝑇𝑦 = −
3𝑉

2𝐻3
 (4𝑦2 − 𝐻2)

          on 𝑥 = 𝐿 ,     
𝑇𝑥 = 0                          

𝑇𝑦 =
3𝑉

2𝐻3
 (4𝑦2 − 𝐻2)

                               

and on 𝑦 = ±
𝐻

2
 ,     

𝑇𝑥 = 0

𝑇𝑦 = 0

                                                                                                                 (3.5) 

along with the conditions 𝑢𝑥(0,0) = 𝑢𝑦(0,0) = 0 and 𝑢𝑥(0,𝐻 2⁄ ) = 0. 

 

4. Analytical Example in Polar Coordinates 
 

 

          In polar coordinates, the quarter-annular 

domain shown at left in Fig. 2 is subjected to the 

boundary conditions 

𝑢𝑟(𝑎, 𝜃) = 𝑢𝜃(𝑎, 𝜃) = 0 ,                                       

𝑇𝑟(𝑏, 𝜃) =
2𝐹

𝑏
cos 4𝜃 ,          𝑇𝜃(𝑏, 𝜃) = 0 ,        

𝑇𝑟(𝑟, 0) = 0 ,          𝑢𝜃(𝑟, 0) = 0 ,              (4.1) 

𝑇𝑟(𝑟, 𝜋 2⁄ ) = 0 ,          𝑢𝜃(𝑟, 𝜋 2⁄ ) = 0 ,              

Figure 2. Quarter-annular domain. where 
 

𝐹 = ∫ 𝑇𝑟(𝑏, 𝜃)

𝜋 8⁄

0

𝑏d𝜃 .                                                                                                                              (4.2) 

The boundary conditions (4.1) may be satisfied with a displacement field of the form 

𝑢𝑟 = 𝑓(𝑟) cos 4𝜃 ,          𝑢𝜃 = 𝑔(𝑟) sin4𝜃 .                                                                                       (4.3) 

Substituting eqns. (4.3) into the strain-displacement relations (1.9), one obtains the strains 

𝜀𝑟𝑟 = 𝑓′ cos4𝜃 ,         𝜀𝜃𝜃 =
1

𝑟
( 𝑓 + 4𝑔) cos 4𝜃 ,         𝜀𝑟𝜃 =

1

2
( 𝑔′ −

1

𝑟
𝑔 −

4

𝑟
𝑓 ) sin 4𝜃 ,   (4.4) 

and via Hooke’s Law (1.3), eqns. (4.4) give the stresses 

𝜎𝑟𝑟 =
1

𝐶(1 − 2𝜈∗)
 [ (1 − 𝜈∗)𝑓′ +

𝜈∗

𝑟
𝑓 +

4𝜈∗

𝑟
𝑔 ] cos 4𝜃 ,                                                                        

𝜎𝜃𝜃 =
1

𝐶(1 − 2𝜈∗)
 [ 𝜈∗𝑓′ +

(1 − 𝜈∗)

𝑟
𝑓 +

4(1 − 𝜈∗)

𝑟
𝑔 ] cos 4𝜃 ,                                                 (4.5) 
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𝜎𝑟𝜃 =
1

2𝐶
 ( 𝑔′ −

1

𝑟
𝑔 −

4

𝑟
𝑓 ) sin 4𝜃 .                                                                                                              

Note that eqns. (4.3) and (4.5) satisfy the boundary conditions at 𝜃 = 0 and 𝜃 = 𝜋 2⁄  identically. Now, 

substitution of the stresses (4.5) into the equilibrium eqns. (1.8) yields the coupled pair of ordinary 

differential equations 

(1 − 𝜈∗)𝑓′′ +
(1 − 𝜈∗)

𝑟
𝑓′ −

(9 − 17𝜈∗)

𝑟2
𝑓 +

2

𝑟
𝑔′ −

2(3 − 4𝜈∗)

𝑟2
𝑔 = 0 ,                                             

(1 − 2𝜈∗)𝑔′′ +
(1 − 2𝜈∗)

𝑟
𝑔′ −

(33 − 34𝜈∗)

𝑟2
𝑔 −

4

𝑟
𝑓′ −

4(3 − 4𝜈∗)

𝑟2
𝑓 = 0 .                           (4.6) 

By assuming functions of the form 

𝑓 = 𝑘𝑟𝑝 ,          𝑔 = 𝑙𝑟𝑝 ,                                                                                                                       (4.7) 

eqns. (4.6) become 

[ 
[ (1 − 𝜈∗)𝑝2 − (9 − 17𝜈∗) ] 2[ 𝑝 − (3 − 4𝜈∗) ]

−4[ 𝑝 + (3 − 4𝜈∗) ] [ (1 − 2𝜈∗)𝑝 − (33 − 34𝜈∗) ]
 ] [ 

𝑘
𝑙
 ] = [ 

0
0
 ] ,                      (4.8) 

which has nontrivial solutions if the determinant of coefficients is zero, viz., 

𝑝4 − 34𝑝2 + 225 = 0 .                                                                                                                        (4.9) 

Thus, 

𝑝 = −5 ,−3 , 3 , 5 .                                                                                                                             (4.10) 

Next, using the four null vectors of eqns. (4.8) as generated by the powers (4.10), one obtains the relations 

between the eight constants 𝑘𝑖 and 𝑙𝑖 

𝑝 = −5  ⇒   𝑙1 = 𝑘1 ,          𝑝 = −3  ⇒   𝑙2 =
2𝜈∗

3 − 2𝜈∗
𝑘2 ,                                                                            

𝑝 = 3  ⇒   𝑙3 = −𝑘3 ,          𝑝 = 5  ⇒   𝑙4 = −
2(2 − 𝜈∗)

1 + 2𝜈∗
𝑘4 .                                                          (4.11) 

Finally, the functions 𝑓 and 𝑔 are then 

𝑓 =
𝑘1

𝑟5
+

𝑘2

𝑟3
+ 𝑘3𝑟

3 + 𝑘4𝑟
5 ,          𝑔 =

𝑙1
𝑟5

+
𝑙2
𝑟3

+ 𝑙3𝑟
3 + 𝑙4𝑟

5 .                                                      (4.12) 

 

 Turning attention to the boundary conditions at 𝑟 = 𝑎 and 𝑟 = 𝑏, eqns. (4.3), (4.5), (4.11) 

and (4.12) give the system 

[
 
 
 
 

 

1 𝑎5⁄ 1 𝑎3⁄

1 𝑎5⁄  2𝜈∗ [ (3 − 2𝜈∗)𝑎3 ]⁄
𝑎3 𝑎5

−𝑎3 −2(2 − 𝜈∗)𝑎5 (1 + 2𝜈∗)⁄

−5 𝑏5⁄ −9 [ (3 − 2𝜈∗)𝑏3 ]⁄

−5 𝑏5⁄ −6 [ (3 − 2𝜈∗)𝑏3 ]⁄

3𝑏3            5𝑏5 (1 + 2𝜈∗)⁄

−3𝑏3          −10𝑏5 (1 + 2𝜈∗)⁄

 

]
 
 
 
 

[ 

𝑘1

𝑘2

𝑘3

𝑘4

 ] = [ 

0
0

2𝐹𝐶
0

 ]              (4.13) 

to solve for the constants 𝑘𝑖. The first of eqns. (4.13) is from 𝑢𝑟(𝑎, 𝜃) = 0; the second is from 

𝑢𝜃(𝑎, 𝜃) = 0; the third, from 𝑇𝑟(𝑏, 𝜃) = 2𝐹 cos 4𝜃 𝑏⁄  ; and the fourth, 𝑇𝜃(𝑏, 𝜃) = 0. Instead of solving 

eqns. (4.13) algebraically, they were solved numerically using the constants 

𝐸 = 3 × 107 psi ,     𝜈 = 0.3 ,     𝑎 = 36 in ,     𝑏 = 72 in ,     𝐹 = 10,000 lb                                 (4.14) 

for plane stress. The results are 
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𝑘1 =     4.468 854 986 101 9630 × 103

𝑘2 = −6.240 733 337 857 3010 × 100

𝑙1 =    4.468 854 986 101 9630 × 103

𝑙2 = −1.134 678 788 701 3274 × 100

  𝑘3 =     1.437 736 140 089 1819 × 10−9

     𝑘4 = −1.194 905 134 758 0960 × 10−13

   𝑙3 = −1.437 736 140 089 1819 × 10−9

     𝑙4 =   2.892 928 220 993 2855 × 10−13

 ,     (4.15) 

which constants solve the problem at hand. 

 

5. The 9–Noded Isoparametric Element 
 

 

          At left, in Fig. 3, is pictured the element in normalized 

𝛏–space, where 𝜉𝑖 ∈ (−1,1). The mapping to physical 𝐱–space is 

accomplished with 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼  ,                                                                                             (5.1) 

where 𝑥𝑖
𝐼 are the coordinates of the nodes in 𝐱–space. With the aid of 

the quadratic functions 

𝑎0 =
1

2
(−𝜉 + 𝜉2)  ,     𝑎1 = 1 − 𝜉2  ,     𝑎2 =

1

2
(𝜉 + 𝜉2)  , (5.2) 

Figure 3. The element in 

                𝛏–space as described 

                in the text. 

 

the nine shape functions 𝑆𝐼 are given by the tensor product 

 

𝑆0 = 𝑎0(𝜉0)𝑎
0(𝜉1)  ,          𝑆

1 = 𝑎1(𝜉0)𝑎
0(𝜉1)  ,          𝑆

2 = 𝑎2(𝜉0)𝑎
0(𝜉1)  ,                                           

𝑆3 = 𝑎0(𝜉0)𝑎
1(𝜉1)  ,          𝑆

4 = 𝑎1(𝜉0)𝑎
1(𝜉1)  ,          𝑆

5 = 𝑎2(𝜉0)𝑎
1(𝜉1)  ,                                 (5.3) 

𝑆6 = 𝑎0(𝜉0)𝑎
2(𝜉1)  ,          𝑆

7 = 𝑎1(𝜉0)𝑎
2(𝜉1)  ,          𝑆

8 = 𝑎2(𝜉0)𝑎
2(𝜉1)  .                                           

Consistent with eqns. (5.1), 

𝜕𝑥𝑖

𝜕𝜉𝛼
≡ 𝐴𝑖𝛼 = 𝑆,𝛼

𝐼 𝑥𝑖
𝐼  ,          d𝑥𝑖 = 𝐴𝑖𝛼  d𝜉𝛼   ,          d𝜉𝛼 = 𝐴𝛼𝑖

−1 d𝑥𝑖  ,          𝑆,𝑖
𝐼 = 𝑆,𝛼

𝐼 𝐴𝛼𝑖
−1  .              (5.4) 

From the second of eqns. (5.4), integrals over the domain 𝐴 may be transformed as 

∫(𝑋)

0

𝐴x

 d𝐴x = ∫(𝑋)(det𝐀) d𝐴ξ

0

𝐴ξ

  ,                                                                                                         (5.5) 

where d𝐴x is the differential of area in 𝐱–space, and d𝐴ξ is the differential of area in 𝛏–space. For 

integrals along the boundary, d𝑥𝑖 = 𝐴𝑖0 d𝜉0 (on faces1 and 3, cf., Fig. 3, where d𝜉1 = 0) and 

d𝑥𝑖 = 𝐴𝑖1 d𝜉1 (on faces 0 and 2 where d𝜉0 = 0). Thus, (d𝑡)2 = d𝑥𝑖d𝑥𝑖 implies 

∮(𝑋)

0

𝑡

d𝑡 = ∫(𝑋)

1

−1

√𝐴𝑖0𝐴𝑖0 d𝜉0  (faces 1 and 3) ,                                                                                         

∮(𝑋)

0

𝑡

d𝑡 = ∫(𝑋)

1

−1

√𝐴𝑖1𝐴𝑖1 d𝜉1  (faces 0 and 2) .                                                                              (5.6) 

Numerically, the right-hand integrals in eqns. (5.5) and (5.6) are calculated with the three-point Gauss-

Legendre quadrature rule, which rule integrates fifth order polynomials exactly. 
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 Turning attention now to the Principle of Virtual Work, interpolate the virtual displacement 𝑢𝑗
∗ as 

𝑢𝑗
∗ = 𝑆𝐼𝑢𝑗

∗𝐼  ,          𝑢𝑗,𝑖
∗ = 𝑆,𝑖

𝐼𝑢𝑗
∗𝐼  ,                                                                                                            (5.7) 

where 𝑢𝑗
∗𝐼 are the nodal values of the virtual displacement 𝑢𝑗

∗. Note that eqns. (5.1) and the first of 

eqns. (5.7) are of the same form. Hence the term “isoparametric”. Nevertheless, substitution of eqns. (5.7) 

into the Principle of Virtual Work (2.4) gives 

𝑢𝑗
∗𝐼 ∫𝑆,𝑖

𝐼𝐿𝑖𝑗𝑘𝑙𝑢𝑙,𝑘  d𝐴

0

𝐴

= 𝑢𝑗
∗𝐼 ∮𝑆𝐼𝑇𝑗 d𝑡

0

𝑡

  ,                                                                                                   (5.8) 

or since 𝑢𝑗
∗𝐼 is arbitrary, 

∫𝑆,𝑖
𝐼𝐿𝑖𝑗𝑘𝑙𝑢𝑙,𝑘 d𝐴

0

𝐴

= ∮𝑆𝐼𝑇𝑗 d𝑡

0

𝑡

  .                                                                                                               (5.9) 

Now, interpolate 𝑢𝑙 and 𝑢𝑙.,𝑘 within the element as 

𝑢𝑙 = 𝑆𝐽𝑢𝑙
𝐽  ,          𝑢𝑙,𝑘 = 𝑆,𝑘

𝐽 𝑢𝑙
𝐽  ,                                                                                                            (5.10) 

where 𝑢𝑙
𝐽
 are the nodal values of the displacement 𝑢𝑙. Finally, putting the second of eqns. (5.10) into 

eqn. (5.9) gives the stiffness relation for the element 

𝐾𝑗𝑙
𝐼𝐽
𝑢𝑙

𝐽
= 𝑓𝑗

𝐼  ,                                                                                                                                             (5.11) 

where 

𝐾𝑗𝑙
𝐼𝐽 = ∫𝑆,𝑖

𝐼𝐿𝑖𝑗𝑘𝑙𝑆,𝑘
𝐽  d𝐴

0

𝐴

  ,          𝑓𝑗
𝐼 = ∮𝑆𝐼𝑇𝑗 d𝑡

0

𝑡

  .                                                                             (5.12) 

 

6. Numerical Example in Cartesian Coordinates 
 

 
Figure 4. Grid used in the analysis as explained in the text. 

 

 Here the problem presented earlier in §3 is analyzed numerically. The computational grid used is 

pictured above in Fig. 4. It consists of a 37 × 25 array of nodes, and an 18 × 12 array of elements. The 

constants used in the analysis are 

𝐸 = 3.0 × 107 psi  ,     𝜈 = 0.3  ,     𝑉 = 10000 lb in⁄   ,     𝐿 = 10 in  ,     𝐻 = 5 in  ,               (6.1) 

and plane stress is assumed. 
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          In all the graphs: the solid curves show the 

exact solution; and the plotted points, the 

numerical solution. For the numerical solution: 

the displacement components 𝑢𝑖 are calculated at 

the nodes; the stress components 𝜎𝑖𝑗 are also 

calculated at the nodes (by using the gradients of 

the element shape functions and nodal averaging). 

 

          Figure 5 at left shows the results for the 

displacement components 𝑢𝑖 along the bottom of 

the domain at 𝑦 = −2.5 in. As is evident, the 

numerical solution basically reproduces the exact 

solution. 

 

          Figures 6 and 7 below show the results at 

the left end of the domain 𝑥 = 0. As is evident, 

once again, the numerically calculated 

Figure 5. Displacement components 𝑢𝑥 (red) and 

                𝑢𝑦 (blue) at 𝑦 = −2.5 in. 

displacements 𝑢𝑖 (Fig. 6), and stress components 

𝜎𝑥𝑥 and 𝜎𝑥𝑦 (Fig. 7), basically coincide with the 

exact solution. 

  
Figure 6. Displacement components 𝑢𝑥 (red) and 

                𝑢𝑦 (blue) at 𝑥 = 0. 

Figure 7. Stress components 𝜎𝑥𝑥 (red) and 

                𝜎𝑥𝑦 (blue) at 𝑥 = 0. 
 

 Figures 8 and 9 below present the results along the right end of the domain located at 𝑥 = 10 in. 

Here also, the numerically calculated displacement components 𝑢𝑖 (Fig. 8), and stress component 𝜎𝑥𝑦 

(Fig. 9) are highly accurate. 

 

 Finally, Figs. 10 and 11 below give the results along a vertical line through the grid located at 

𝑥 = 7.5 in. As before, the numerical results for the displacement components 𝑢𝑖 (Fig.10), and stress 

components 𝜎𝑥𝑥 and 𝜎𝑥𝑦 (Fig. 11), for all practical purposes, reproduce the exact solution. 
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Figure 8. Displacement components 𝑢𝑥 (red) and 

                𝑢𝑦 (blue) at 𝑥 = 10 in. 

Figure 9. Stress component 𝜎𝑥𝑦 at 𝑥 = 10 in. 

  
Figure 10. Displacement components 𝑢𝑥 (red) and 

                 𝑢𝑦 (blue) at 𝑥 = 7.5 in. 

Figure 11. Stress components 𝜎𝑥𝑥 (red) and 

                 𝜎𝑥𝑦 (blue) at 𝑥 = 7.5 in. 

 

7. Numerical Example in Polar Coordinates 
 

 The problem presented above in §4 is solved here numerically. The computational grid used for 

the numerical analysis is shown below in Fig. 12. It consists of a 25 (radial) × 37 (tangential) array of 

nodes, and a 12 (radial) × 18 (tangential) array of elements. The constants used in the analysis were given 

previously in eqns. (4.14). Plane stress is assumed. 

 

In all the graphs herein: the solid curves show the exact solution; and the plotted points, the 

numerical solution. For the numerical solution: the displacement components 𝑢𝑖 are calculated at the 

nodes; the stress components 𝜎𝑖𝑗 are also calculated at the nodes (by using the gradients of the element 

shape functions and nodal averaging). 
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Figure 12. Computational grid used in the analysis as described in the text. 

 

 

          Figure 13 at left presents the results for the 

displacement component 𝑢𝑥 along the bottom of 

the domain at 𝜃 = 0. Figure 14 below shows the 

results for the stress components 𝜎𝑥𝑥 and 𝜎𝑦𝑦 also 

at 𝜃 = 0. As is seen from both the figures, the 

numerically calculated results are highly accurate. 

 

          Figures 15 and 16 depict the results at the 

outer radius of the domain 𝑟 = 72 in. Figure 15 

shows the numerically calculated displacements 

components 𝑢𝑥 and 𝑢𝑦, which again, are very 

accurate. The stress components are shown in 

Fig. 16. Except for the minor inaccuracies in 𝜎𝑥𝑥 

near 𝜃 = 𝜋 2⁄ , and in 𝜎𝑦𝑦 near 𝜃 = 0, the 

remaining numerical results are accurate. 

Figure 13. Displacement component 𝑢𝑥 at 𝜃 = 0.           Figure 17 below shows the results for the 
 

stress components 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑥𝑦 at the inner radius of the domain 𝑟 = 36 in. In this case, all three 

numerically calculated stress components basically reproduce the exact solution. 
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Figure 14. Stress components 𝜎𝑥𝑥 (red) and 

                  𝜎𝑦𝑦 (blue) at 𝜃 = 0. 

Figure 15. Displacement components 𝑢𝑥 (red) and 

                  𝑢𝑦 (blue) at 𝑟 = 72 in. 

  
Figure 16. Stress components 𝜎𝑥𝑥 (red), 

                 𝜎𝑦𝑦 (blue) and 𝜎𝑥𝑦 (purple) at 

                 𝑟 = 72 in. 

Figure 17. Stress components 𝜎𝑥𝑥 (red), 

                 𝜎𝑦𝑦 (blue) and 𝜎𝑥𝑦 (purple) at 

                 𝑟 = 36 in. 
 

 Figures 18 and 19 below present the results along a radial line through the grid located at 

𝜃 = 𝜋 8⁄ . As has been the case, the numerically calculated displacement components 𝑢𝑥 and 𝑢𝑦 basically 

coincide with the exact solution. For the stress components 𝜎𝑥𝑥 and 𝜎𝑦𝑦, the numerically calculated 

results also are very accurate. Note that at 𝜃 = 𝜋 8⁄ , 𝜎𝑥𝑦 = 𝜎𝑦𝑦. 

 

 Finally, Figs. 20 and 21 below depict the results along a ring of nodes through the grid located at 

𝑟 = 53.939 in. Yet once again, the numerically calculated displacement components 𝑢𝑥 and 𝑢𝑦 (Fig. 20) 

and stress components 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑥𝑦 (Fig. 21) all are highly accurate. 
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Figure 18. Displacement components 𝑢𝑥 (red) and 

                  𝑢𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 

Figure 19. Stress components 𝜎𝑥𝑥 (red) and 

                 𝜎𝑦𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 

  
Figure 20. Displacement components 𝑢𝑥 (red) and 

                  𝑢𝑦 (blue) at 𝑟 = 53.939 in. 

Figure 21. Stress components 𝜎𝑥𝑥 (red), 

                 𝜎𝑦𝑦 (blue) and 𝜎𝑥𝑦 (purple) at 

                 𝑟 = 53.939 in. 

 

8. Closing Remarks 
 

Obviously, the 9–noded isoparametric element of §5 is both highly reliable and highly accurate, 

and it is the finite element of choice for two-dimensional linear elasticity. It is worth mentioning that if 

the grids of nodes in Figs. 4 and 12 are meshed with the 4–noded isoparametric element, then the 

numerical results obtained are significantly less accurate. 

 


