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1. Governing Equations 
 

The simplest second-order elliptic partial differential equation is Poisson’s equation, viz., 

𝑇∇2𝑢 + 𝑝 = 0 ,                                                                                                                        (1.1) 

where 𝑢 is the transverse displacement of a (e.g., soap) film, 𝑝 is the transverse pressure, and 𝑇 is the 

surface tension of the film (force per unit length). In Cartesian coordinates, the Laplacian is 

∇2𝑢 = 𝑢,𝑖𝑖 = 𝑢,𝑥𝑥 + 𝑢,𝑦𝑦  ,                                                                                                    (1.2) 

where the comma denotes partial differentiation with respect to the coordinates. 

 

 In polar coordinates we have 

∇2𝑢 = 𝑢,𝑟𝑟 +
1

𝑟
𝑢,𝑟 +

1

𝑟2
𝑢,𝜃𝜃  .                                                                                             (1.3) 

Also in polar coordinates, the components of the gradient are 

(𝛁𝑢)𝑟 = 𝑢,𝑟  ,          (𝛁𝑢)𝜃 =
1

𝑟
𝑢,𝜃  .                                                                                    (1.4) 

 

 Attention is now given to the Principle of Virtual Work. Thus, let 𝑢∗ be a once-differentiable 

scalar field (the so-called virtual displacement). By the product rule of differentiation 

(𝑢∗𝑢,𝑖)
,𝑖

= 𝑢,𝑖
∗𝑢,𝑖 + 𝑢∗𝑢,𝑖𝑖  .                                                                                                   (1.5) 

Now, substituting of eqns. (1.1) and (1.2) into eqn. (1.5), one obtains 

𝑇𝑢,𝑖
∗𝑢,𝑖 = 𝑇(𝑢∗𝑢,𝑖)

,𝑖
+ 𝑢∗𝑝 .                                                                                                (1.6) 

Next, integrate eqn. (1.6) over the domain 𝐴 and use the Divergence Theorem to see 

𝑇 ∫ 𝑢,𝑖
∗𝑢,𝑖 d𝐴

0

𝐴

= 𝑇 ∮ 𝑢∗𝑢,𝑛 d𝑡

0

𝑡

+ ∫ 𝑢∗𝑝 d𝐴

0

𝐴

  ,                                                                 (1.7) 

which is the Principle of Virtual Work. In eqn. (1.7), 𝑡 is the coordinate around the boundary of 𝐴, and 

𝑢,𝑛 = 𝑛𝑖𝑢,𝑖 is the normal derivative of 𝑢 (𝐧 is the outward-pointing unit normal vector on the boundary). 

From eqn. (1.7) we see that admissible boundary conditions for Poisson’s equation are prescribe either 𝑢 

or 𝑢,𝑛 at each point on the boundary. 

 

2. Example in Rectangular Coordinates 
 

Consider the 𝐿 × 𝐻 rectangular domain, pictured in Fig. 1, subjected to the “bubble” pressure 

distribution 

𝑝 = 𝑝0 cos  ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ),                                                                                            (2.1) 

where 𝑝0 is the pressure at the origin. The boundary conditions are 

𝑢 = 0                                                                                                                                        (2.2) 

on all four faces. Here, the governing equation is, cf., eqns. (1.1) and (1.2), 

𝑢,𝑥𝑥 + 𝑢,𝑦𝑦 = −
1

𝑇
𝑝0 cos  ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                                                                (2.3) 
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Equation (2.3) is solved with a displacement of 

the form 

𝑢 = 𝑘 cos  ( 
𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 ) .                   (2.4) 

Note that eqn. (2.4) satisfies the boundary 

conditions (2.2). In any case, substituting 

eqn. (2.4) into eqn. (2.3) yields the value of 𝑘, 

viz., 

𝑘 =
𝑝0

𝜋2𝑇
 (

𝐿2𝐻2

𝐿2 + 𝐻2) .                               (2.5) 

Also, the gradients are 

Figure 1. Rectangular domain as described in the 

               text. 

 

 

𝑢,𝑥 = −𝑘
𝜋

𝐿
sin ( 

𝜋𝑥

𝐿
 ) cos ( 

𝜋𝑦

𝐻
 )  ,          𝑢,𝑦 = −𝑘

𝜋

𝐻
cos ( 

𝜋𝑥

𝐿
 ) sin ( 

𝜋𝑦

𝐻
 ) .                 (2.6) 

 

3. Example in Polar Coordinates 
 

Consider the quarter-annular domain shown in Fig. 2 subjected to the pressure load 
 

 

𝑝 =
2𝐹

𝑏2 − 𝑎2
 cos 𝜃  ,                                                  (3.1) 

where 𝐹 is the net force acting on the domain, i.e., 

𝐹 = ∫ 𝑝d𝐴

0

𝐴

 .                                                               (3.2) 

In this case the governing equation is 

𝑢,𝑟𝑟 +
1

𝑟
𝑢,𝑟 +

1

𝑟2
𝑢,𝜃𝜃 = −

2𝐹

𝑇(𝑏2 − 𝑎2)
cos 𝜃  ,   (3.3) 

Figure 2. Quarter-annular domain as described 

                in the text. 

cf., eqns. (1.1) and (1.3). The boundary conditions 

for the problem are 
 

𝑢,𝑛 = 0  on  𝜃 = 0 ,     and    𝑢 = 0  on the other three boundaries.                                      (3.4) 

Assuming a displacement of the form 

𝑢 = 𝑓(𝑟) cos 𝜃                                                                                                                                      (3.5) 

eqn. (3.3) becomes 

𝑓′′ +
1

𝑟
𝑓′ −

1

𝑟2
𝑓 = −

2𝐹

𝑇(𝑏2 − 𝑎2)
 ,                                                                                               (3.6) 

whose general solution is 

𝑓 = 𝑘1𝑟 +
𝑘2

𝑟
−

2𝐹

3𝑇(𝑏2 − 𝑎2)
𝑟2  ,          𝑓′ = 𝑘1 −

𝑘2

𝑟2
−

4𝐹

3𝑇(𝑏2 − 𝑎2)
𝑟 .                             (3.7) 

Also, from eqns. (1.4), the components of the gradient vector are 
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(𝛁𝑢)𝑟 = 𝑓′(𝑟) cos 𝜃   ,          (𝛁𝑢)𝜃 = −
1

𝑟
𝑓(𝑟) sin 𝜃 .                                                              (3.8) 

Finally, one notes, from eqns. (3.5) and the second of eqns. (3.8), that the boundary conditions are 

satisfied identically on the faces 𝜃 = 0 and 𝜃 = 𝜋 2⁄ . Then, satisfying the boundary conditions on 𝑟 = 𝑎 

and 𝑟 = 𝑏 gives the values of the constants 

𝑘1 =
2𝐹(𝑏3 − 𝑎3)

3𝑇(𝑏2 − 𝑎2)2
  ,          𝑘2 = −

2𝐹𝑎2𝑏2(𝑏 − 𝑎)

3𝑇(𝑏2 − 𝑎2)2
  ,                                                             (3.9) 

which solves the problem at hand. 

 

4. The 9–Noded Isoparametric Finite Element 
 

 

          At left in Fig.3 is pictured the finite element 

in normalized 𝛏–space spanning (−1,1) × (−1,1). 

The geometry of the element in physical 𝐱–space 

is interpolated with the aid of the quadratic 

functions 

𝑎0 =
1

2
(−𝜉 + 𝜉2)                                         

𝑎1 = 1 − 𝜉2                                         (4.1) 

𝑎2 =
1

2
(𝜉 + 𝜉2) ,                                          

Figure 3. The 9–noded isoparametric finite 

                element in 𝛏–space as explained in the 

                text. 

the tensor product of which functions yield the 

desired interpolation functions 𝑆𝐼, viz., 

 

𝑆0 = 𝑎0(𝜉0)𝑎0(𝜉1) 𝑆1 = 𝑎1(𝜉0)𝑎0(𝜉1) 𝑆2 = 𝑎2(𝜉0)𝑎0(𝜉1)

𝑆3 = 𝑎0(𝜉0)𝑎1(𝜉1) 𝑆4 = 𝑎1(𝜉0)𝑎1(𝜉1) 𝑆5 = 𝑎2(𝜉0)𝑎1(𝜉1)

𝑆6 = 𝑎0(𝜉0)𝑎2(𝜉1) 𝑆7 = 𝑎1(𝜉0)𝑎2(𝜉1) 𝑆8 = 𝑎2(𝜉0)𝑎2(𝜉1)

  ,                                             (4.2) 

which are the usual “shape” functions of the 9–noded isoparametric finite element. Notwithstanding, the 

physical coordinates and pressure are interpolated via 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼 ,          𝑝 = 𝑆𝐼𝑝𝐼 ,                                                                                                                  (4.3) 

where 𝑥𝑖
𝐼 are the physical coordinates of the nodes, and 𝑝𝐼 are the pressures at those nodes. Now, 

differentiation of the first of eqns. (4.3) gives 

𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝑖
𝐼 ≡ 𝐴𝑖𝛼  ,          d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼  ,          d𝐴𝐱 = (det 𝐀)d𝐴𝛏 ,                                         (4.4) 

where d𝐴𝐱 is the differential of area in 𝐱–space, and d𝐴𝛏 is the differential of area in 𝛏–space. Thus, 

∫(𝑋)d𝐴𝐱

0

𝐴𝐱

= ∫(𝑋)

0

𝐴𝛏

(det 𝐀)d𝐴𝛏 .                                                                                                     (4.5) 

In the numerical calculations, area integrations like (4.5) are carried out numerically via the 3–point 

Gauss-Legendre quadrature rule, which integrates a fifth order polynomial exactly. Finally, from the 

second of eqns. (4.4) 

d𝜉𝛼 = 𝐴𝛼𝑖
−1d𝑥𝑖  ,          𝑆,𝑖

𝐼 = 𝑆,𝛼
𝐼 𝐴𝛼𝑖

−1  ,                                                                                              (4.6) 
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which gives the gradients of the shape functions in 𝐱–space. 
 

 

          Figure 4 shows one of the faces of the element (with 

renumbering of the nodes, as needed). Again, the normalized 

coordinate 𝜉 ∈ (−1,1). Here 

𝑥𝑖 = 𝑎𝐼𝑥𝑖
𝐼          𝐼 = 0,1,2,                                                (4.7) 

Figure 4. A face of the element.  

where 𝑎𝐼 are as per eqns. (4.1). Now, defining 𝐵𝑖 via 
 

𝑥𝑖,𝜉 = 𝑎,𝜉
𝐼 𝑥𝑖

𝐼 ≡ 𝐵𝑖      ⇒      d𝑥𝑖 = 𝐵𝑖d𝜉  .                                                                                   (4.8) 

Thus, 

(d𝑡)2 = d𝑥𝑖d𝑥𝑖      ⇒      d𝑡 = 𝐵d𝜉  ,         𝐵 = √𝐵𝑖𝐵𝑖   .                                                         (4.9) 

From eqns. (4.9) then, integrations over the boundary may be written as 

∮(𝑋) d𝑡

0

𝑡

= ∫(𝑋)𝐵 d𝜉

1

−1

  ,                                                                                                         (4.10) 

which line integrations, numerically, once again, are calculated with the 3–point Gauss-Legendre 

quadrature rule. 

 

 Attention is now turned to the Principle of Virtual Work (1.7). So, interpolate the virtual 

displacement within the element via 

𝑢∗ = 𝑆𝐼𝑢∗𝐼  ,          𝑢,𝑖
∗ = 𝑆,𝑖

𝐼𝑢∗𝐼  ,                                                                                             (4.11) 

where 𝑢∗𝐼 are the nodal values of the virtual displacement. Note that the first of eqns. (4.3) and (4.11) 

possess the same form. Hence the term “isoparametric”. In any case, substitution of eqns. (4.11) into 

eqn. (1.7) gives 

𝑢∗𝐼𝑇 ∫ 𝑆,𝑖
𝐼𝑢,𝑖 d𝐴

0

𝐴

= 𝑢∗𝐼𝑇 ∮ 𝑆𝐼𝑢,𝑛 d𝑡

0

𝑡

+ 𝑢∗𝐼 ∫ 𝑆𝐼𝑝 d𝐴

0

𝐴

  ,                                                     (4.12) 

or since 𝑢∗𝐼 is arbitrary, 

𝑇 ∫ 𝑆,𝑖
𝐼𝑢,𝑖 d𝐴

0

𝐴

= 𝑇 ∮ 𝑆𝐼𝑢,𝑛 d𝑡

0

𝑡

+ ∫ 𝑆𝐼𝑝 d𝐴

0

𝐴

  .                                                                       (4.13) 

Next, interpolate 𝑢 within the element with 

𝑢 = 𝑆𝐽𝑢𝐽  ,          𝑢,𝑖 = 𝑆,𝑖
𝐽𝑢𝐽  ,                                                                                                (4.14) 

where 𝑢𝐽 are the nodal values of the displacement 𝑢. Finally, putting eqns. (4.14) into eqn. (4.13) gives 

the stiffness relation for the element 

𝐾𝐼𝐽𝑢𝐽 = 𝑓𝑛
𝐼 + 𝑓𝑝

𝐼  ,                                                                                                                   (4.15) 

where 

𝐾𝐼𝐽 = 𝑇 ∫ 𝑆,𝑖
𝐼𝑆,𝑖

𝐽 d𝐴

0

𝐴

  ,          𝑓𝑛
𝐼 = 𝑇 ∮ 𝑆𝐼𝑢,𝑛 d𝑡

0

𝑡

  ,          𝑓𝑝
𝐼 = ∫ 𝑆𝐼𝑝 d𝐴

0

𝐴

  .                    (4.16) 
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5. Numerical Example in Rectangular Coordinates 
 

 
Figure 5. Computational grid used in the analysis as described in the text. 

 

 

          Here the problem presented above in §2 is 

solved numerically. The computational grid used 

in the analysis is shown above in Fig. 5. It 

consists of a 37 × 25 array of nodes, and an 

18 × 12 array of elements. Due to symmetry, only 

the upper right quadrant of the domain in Fig. 1 is 

analyzed. The corresponding boundary conditions 

at 𝑥 = 0 and 𝑦 = 0 are 

𝑢,𝑛 = 0 ,                                                      (5.1) 

and the boundary conditions at 𝑥 = 𝐿 2⁄  and 

𝑦 = 𝐻 2⁄  are 

𝑢 = 0 .                                                         (5.2) 

The constants used in the analysis are 

𝑇 = 4.14 × 10−4  lb in⁄  ,     𝐿 = 12 in ,        
𝐻 = 8 in  ,     𝑝0 = 5 × 10−3 psi  .       (5.3) 

Figure 6. The displacement 𝑢 at 𝑦 = 0.  
 

The value for 𝑇 in eqns. (5.3) is for water, and as it turns out, the value used for 𝑝0 is unrealistically large 

(very large displacements result). 

 

 Notwithstanding, in all the graphs herein: the solid curves represent the exact solution; and the 

plotted points, the numerically calculated results. The displacement 𝑢 is calculated at the nodes of the 

grid, as are the displacement gradients 𝑢,𝑖 (by using the gradients of the element shape functions, and by 

using nodal averaging). 

 

 Figure 6 above shows the results for the displacement 𝑢 at the bottom of the analyzed domain 

𝑦 = 0. The results for the displacement gradient 𝑢,𝑥, also at 𝑦 = 0, are shown below in Fig. 7. Both the 

numerically calculated displacement and its gradient are highly accurate. 
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Figure 7. The displacement gradient 𝑢,𝑥 at 𝑦 = 0. Figure 8. The displacement gradient 𝑢,𝑥 at 

                𝑥 = 6 in. 
 

 The results for the displacement gradient 𝑢,𝑥 at the right boundary of the domain 𝑥 = 6 in is 

shown above in Fig. 8. Once again, the numerically calculated results are highly accurate. 
 

  
Figure 9. The displacement 𝑢 at 𝑥 = 3 in. Figure 10. The displacement gradients 𝑢,𝑥 (red) 

                  and 𝑢,𝑦 (blue) at 𝑥 = 3 in. 
 

 Finally, in Figs. 9 and 10 above are shown the calculated results along a vertical line of nodes in 

the grid located at 𝑥 = 3 in. As has been the case, the numerically calculated values of the displacement 𝑢 

(Fig. 9) and the displacement gradients 𝑢,𝑖 (Fig. 10) basically coincide with the exact solution. 
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6. Numerical Example in Polar Coordinates 
 

 
Figure 11. Computational grid used in the analysis as explained in the text. 

 

 

          The problem solved analytically above in 

§3 is analyzed here numerically. The 

computational grid used in the analysis is shown 

above in Fig. 11. It consists of a 25 (radial) × 37 

(tangential) array of nodes, and a 12 (radial) × 18 

(tangential) array of elements. The constants used 

in the analysis are 

𝑇 = 4.14 × 10−4 psi  ,     𝐹 = 2.0 lb  ,           
𝑎 = 6 in  ,     𝑏 = 12 in  .                        (6.1) 

The value of 𝑇 in eqns. (6.1) is for water, and the 

value of 𝐹 is unrealistically large (as was the case 

in §5, i.e., unrealistically large displacements 

result). 

 

          In all the graphs herein: the solid curves 

represent the exact solution; and the plotted 

points, the numerically calculated results. The 

Figure 12. The displacement 𝑢 at 𝜃 = 0. displacement 𝑢 is calculated at the nodes of the 
 

grid, as are the displacement gradients 𝑢,𝑖 (by using the gradients of the element shape functions, and by 

using nodal averaging). 
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Figure 12 above shows the results for the displacement 𝑢 at the bottom of the domain 𝜃 = 0. 

Figure 13 below shows the displacement gradient 𝑢,𝑥 at the same location. As is evident, the numerically 

  
Figure 13. The displacement gradient 𝑢,𝑥 at 

                  𝜃 = 0. 

Figure 14. The displacement gradients 𝑢,𝑥 (red) 

                  and 𝑢,𝑦 (blue) at 𝑟 = 12 in. 
 

calculated results are highly accurate. 

 

 Figure 14 above shows the results for the displacement gradients 𝑢,𝑖 at the outer radius of the 

domain 𝑟 = 12 in. Once again, the numerically calculated values are highly accurate. 

 

 Figure 15 below shows the results for the displacement gradient 𝑢,𝑥 at the left boundary of the 

domain 𝜃 = 𝜋 2⁄ . As before, the numerically calculated results basically coincide with the exact solution. 

 

 The results for the displacement gradients 𝑢,𝑖 at the inner radius of the domain 𝑟 = 6 in are 

shown below in Fig. 16. As previously, the numerically calculated results basically coincide with the 

exact solution. 
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Figure 15. The displacement gradient 𝑢,𝑥 at 

                  𝜃 = 𝜋 2⁄ . 

Figure 16. The displacement gradients 𝑢,𝑥 (red) 

                  and 𝑢,𝑦 (blue) at 𝑟 = 6 in. 

  
Figure 17. The displacement 𝑢 at 𝜃 = 𝜋 8⁄ . Figure 18. The displacement gradients 𝑢,𝑥 (red) 

                  and 𝑢,𝑦 (blue) at 𝜃 = 𝜋 8⁄ . 
 

 The calculated results along a radial line of nodes through the grid located at 𝜃 = 𝜋 8⁄  are shown 

in Figs. 17 and 18 above. Yet again, the numerically calculated values of 𝑢 (Fig.17) and 𝑢,𝑖 (Fig. 18) are 

highly accurate. 

 

 Finally, the numerical results for the displacement 𝑢 and displacement gradients 𝑢,𝑖 along the ring 

of nodes in the grid located at 𝑟 = 9.253 in are shown below in Figs. 19 and 20. As has been the case all 

along, the numerical results basically coincide with the exact solution. 
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Figure 19. The displacement 𝑢 at 𝑟 = 9.253 in. Figure 20. The displacement gradients 𝑢,𝑥 (red) 

                  and 𝑢,𝑦 (blue) at 𝑟 = 9.253 in. 

 

7. Closing Remarks 
 

 The above numerical results all are highly accurate. One reason for this is that Poisson’s equation 

is very easy to solve. Another reason is that the 9–noded isoparametric finite element of §4 is both very 

reliable and accurate. It is worth mentioning that if the grids shown above in Figs. 5 and 11 are meshed 

with 4–noded bi-linear isoparametric finite elements, then numerical results of comparable accuracy to 

those above are obtained. 

 


