
Finite Elasticity 
 

1 
 

FINITE ELASTICITY 

 

by 

Stephen V. Harren 
http://www.harren.us 

 

Contents 
 

1. Strain Measures …………………………………………………………………………….…..….2 

2. Uniaxial Response ………………………………………………………………………………....…3 

3. Multiaxial Response and Stress Measures ………………..………………………………………...5 

4. Equilibrium Equations …………………………………………………………………..……….6 

5. Brick Element and Finite Element Equations  …………………………………….…….…..…7 

6. Numerical Example – Drawing of a Tension Specimen ……………………………………...…8 

7. Closing Remarks …………………………………………………………………………………..11 

  



Finite Elasticity 
 

2 
 

1. Strain Measures 
 

 The deformation gradient 𝐹 is defined by 

d𝑥𝑖 = 𝐹𝑖𝑗d𝑋𝑗  ,                                                                                                                              (1.1) 

where d𝑋𝑖 is a differential vector of material particles in the undeformed configuration, which same 

material vector in the deformed configuration is d𝑥𝑖. The only restriction on 𝐹 is det 𝐹 > 0. By the Polar 

Decomposition Theorem, 𝐹 can be decomposed as 

𝐹 = 𝑉𝑅  ,                                                                                                                                      (1.2) 

where  𝑉 is the (symmetric) left stretch tensor (whose eigenvalues are positive), and 𝑅 is the rotation 

tensor. 

 

 To calculate 𝑉, consider 

𝐵 = 𝐹𝐹𝑇 = 𝑉𝑅𝑅𝑇𝑉 = 𝑉𝐼𝑉 = 𝑉𝑉  ,          𝑖. 𝑒. ,     𝑉 = √𝐵 .                                              (1.3) 

Typically, the square root in eqn. (1.3) is calculated by solving a three-dimensional eigenproblem. 

Numerically, though, using Babylonian (or Hero’s) iteration is more reliable. The scalar form of the 

iteration is 

𝑥imp =
1

2
(𝑥 +

𝑆

𝑥
 )  ,                                                                                                                  (1.4) 

where 𝑥 is a guess for √𝑆 and 𝑥imp is an improved guess. Equation (1.4) calculates √99 to 10 digits of 

accuracy with 8 iterations. The tensorial form of eqn. (1.4) is 

𝑉𝑘𝑙
imp

=
1

2
𝑉𝑘𝑙 +

1

4
( 𝐵𝑘𝑗𝑉𝑗𝑙

−1 + 𝐵𝑙𝑗𝑉𝑗𝑘
−1 ) .                                                                             (1.5) 

 

When implementing eqn. (1.2) in a finite element program, the gradients 𝜕𝑉𝑖𝑗 𝜕𝐹𝑝𝑞⁄  are required. 

Consequently, by differentiating 𝐵 = 𝑉𝑉, one obtains 

𝜕𝐵𝑖𝑗

𝜕𝑉𝑝𝑞
= 𝐼𝑖𝑘𝑝𝑞𝑉𝑘𝑗 + 𝑉𝑖𝑘𝐼𝑘𝑗𝑝𝑞   with   𝐼𝑖𝑗𝑘𝑙 =

1

2
( 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙  )  ,                                  (1.6) 

where 𝐼𝑖𝑗𝑘𝑙 is the fourth order fully symmetric identity tensor, and 𝛿𝑖𝑗 are the components of the three-

dimensional identity matrix (or Kronecker delta). Notwithstanding, 𝜕𝑉𝑖𝑗 𝜕𝐵𝑝𝑞⁄  is the inverse of 

𝜕𝐵𝑖𝑗 𝜕𝑉𝑝𝑞⁄ , which inverse may be calculated from eqns. (1.6) by inverting a 6 × 6 matrix. Next, 

differentiation of 𝐵 = 𝐹𝐹𝑇 gives 

𝜕𝐵𝑖𝑗

𝜕𝐹𝑝𝑞
= 𝛿𝑖𝑝𝐹𝑗𝑞 + 𝐹𝑖𝑞𝛿𝑗𝑝 .                                                                                                         (1.7) 

Finally, by the chain rule, 

𝜕𝑉𝑖𝑗

𝜕𝐹𝑝𝑞
=

𝜕𝑉𝑖𝑗

𝜕𝐵𝑘𝑙

𝜕𝐵𝑘𝑙

𝜕𝐹𝑝𝑞
  .                                                                                                                (1.8) 

 

 The strain measure most appropriate for finite elasticity is the true (or logarithmic) strain 𝜀, which 

is defined via 

𝜀 = ln 𝑉 .                                                                                                                                   (1.9) 

Again, typically, the logarithm in eqn. (1.9) is calculated by diagonalizing 𝑉, and by taking the logarithms 
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of the eigenvalues of 𝑉. Numerically, a Taylor series is more reliable. In the scalar case 

ln 𝑥 = ∑
2

2𝑖 + 1
( 

𝑥 − 1

𝑥 + 1
 )

2𝑖+1

     𝑁 → ∞

𝑁

𝑖=0

  ,                                                                    (1.10) 

which series converges for all 𝑥. For example, the series (1.10) calculates ln 12 to 9 digits of accuracy 

with 𝑁 = 49 (i.e., 50 terms). Letting 

𝐴𝑖𝑗 =
1

2
( 𝐶𝑖𝑘𝐷𝑘𝑗 + 𝐶𝑗𝑘𝐷𝑘𝑖 )   with     𝐶 = 𝑉 − 𝐼     and     𝐷 = (𝑉 + 𝐼)−1  ,            (1.11) 

the tensorial form of eqn. (1.10) is 

𝜀 = ln 𝑉 = ∑
2

2𝑖 + 1
𝐴2𝑖+1

𝑁

𝑖=0

 .                                                                                            (1.12) 

 

 When one calculates the derivatives 𝜕𝜀𝑖𝑗 𝜕𝑉𝑝𝑞⁄  of eqn. (1.12), untenably long expressions are 

obtained after only a few terms. Thus, in a finite element code, central difference is used. For example, 

𝜕𝜀𝑖𝑗

𝜕𝑉01
=

𝜀𝑖𝑗
+ − 𝜀𝑖𝑗

−

Δ
  ,          𝜀𝑖𝑗

+ = 𝜀𝑖𝑗(𝑉+)  ,          𝜀𝑖𝑗
− = 𝜀𝑖𝑗(𝑉−) ,                                               

𝑉+ = 𝑉 +
1

2
[ 

0 Δ 0
Δ 0 0
0 0 0

 ]  ,          𝑉− = 𝑉 −
1

2
[ 

0 Δ 0
Δ 0 0
0 0 0

 ]   ,          𝑒𝑡𝑐.                 (1.13) 

In the numerical calculations of Sec. 6 below, Δ = 0.001 is used. 

 

 As an example of the above calculational procedure, letting 

𝐹 = [ 
0.750 0.25 0.50

−0.125 1.50 −0.75
−1.750 2.00 1.25

 ]  ,                                                                                 (1.14) 

eqn. (1.5) gives, using 10 iterations, 

𝑉 = [ 
0.933 900 −0.027 895 4 −0.045 306 0

−0.027 895 4 1.603 16 0.507 169
−0.045 306 0 0.507 169 2.892 36

 ]  ,                                    (1.15) 

and then eqn. (1.12) yields, using 50 terms, 

𝜀 = [ 
−0.069 092 3 −0.018 849 2 −0.024 117 6
−0.018 849 2 0.437 725 0.236 368
−0.024 117 6 0.236 368 1.038 92

 ] .                                     (1.16) 

The results (1.15) and (1.16) have been verified by solving the corresponding eigenproblems by hand. 

 

2. Uniaxial Response 
 

 Figure 1 below shows the uniaxial stress-strain curve for vulcanized rubber. The blue plotted 

points in the figure are the experimental data of Treloar (1940), see the “Herve Marand Rubber Elasticity 

Lecture 17” (eng.uc.edu). While the author is not quite sure of the exact meaning of 𝜎 and 𝜀 in the 

figure, herein they will be interpreted as being true stress and true (or logarithmic) strain. The red curve in 

the figure is a piecewise cubic fit to the data, which fit is constructed as follows. The 𝜀–axis is broken into 
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𝑛 subintervals, the 𝑖th one of which is depicted below in Fig. 2. The normalized coordinate 𝜉 ∈ (−1,1) in 

the figure is 

𝜉 =
2𝜀 − 𝜀𝑖+1 − 𝜀𝑖

𝐿
  ,          𝐿 = 𝜀𝑖+1 − 𝜀𝑖  .                                                                 (2.1) 

Now, in each subinterval 𝑖 ∈ (0, 𝑛 − 2), the uniaxial stress is written as 

𝜎 = 𝑎0𝜎𝑖 + 𝑎1𝑚𝑖 + 𝑎2𝜎𝑖+1 + 𝑎3𝑚𝑖+1  ,                                                                   (2.2) 

 

 
Figure 2. Normalized subinterval. 

 

where, e.g., 𝑚𝑖 is the slope of the stress-strain 

curve at point 𝑖 in Fig. 2, and 

𝑎0 =
1

4
(2 − 3𝜉 + 𝜉3)  ,                          

𝑎1 =
𝐿

8
(1 − 𝜉 − 𝜉2 + 𝜉3)  ,                   

𝑎2 =
1

4
(2 + 3𝜉 − 𝜉3)  ,               (2.3) 

𝑎3 =
𝐿

8
(−1 − 𝜉 + 𝜉2 + 𝜉3)  .               

Figure 1. Stress-strain data for vulcanized rubber 

                as explained in the text. 

 

The derivative of eqn. (2.2) is 
 

d𝜎

d𝜀
= 𝑎,𝜀

0 𝜎𝑖 + 𝑎,𝜀
1 𝑚𝑖 + 𝑎,𝜀

2 𝜎𝑖+1 + 𝑎,𝜀
3 𝑚𝑖+1 ,                                                            (2.4) 

with 

𝑎,𝜀
0 =

3

2𝐿
(−1 + 𝜉2)  ,           𝑎,𝜀

1 =
1

4
(−1 − 2𝜉 + 3𝜉2)  ,                                                

𝑎,𝜀
2 =

3

2𝐿
(1 − 𝜉2)  ,          𝑎,𝜀

3 =
1

4
(−1 + 2𝜉 + 3𝜉2)  .                                         (2.5) 

Finally, for the last subinterval 𝑖 = 𝑛 − 1 (i.e., for 𝜀 > 𝜀𝑛−1), the response is taken as linear, viz., 

𝜎 = 𝑚𝑛−1(𝜀 − 𝜀𝑛−1) + 𝜎𝑛−1   ,             
d𝜎

d𝜀
= 𝑚𝑛−1  .                                        (2.6) 

Thus, the red curve in Fig. 1 above is constructed with 𝑛 = 3 and the constants 

𝜀0 = 0  ,                       𝜀1 = 1.5  ,                   𝜀2 = 1.9                                                    
𝜎0 = 0 psi  ,                𝜎1 = 200 psi  ,          𝜎2 = 460 psi  ,                             (2.7) 

𝑚0 = 230 psi  ,          𝑚1 = 260 psi  ,          𝑚2 = 1570 psi  .                                    
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Additionally, the secant modulus is 

𝐸𝑠 =
𝜎

𝜀
 ,                                          (2.8) 

which is graphed at right in Fig. 3. Finally, 

differentiation of eqn. (2.8) yields 

d𝐸𝑠

d𝜀
=

1

𝜀
( 

d𝜎

d𝜀
− 𝐸𝑠 )  .                (2.9)  

 

 

 

 

 

 

Figure 3. The secant modulus 𝐸𝑠.  

 

3. Multiaxial Response and Stress Measures 
 

 

          Figure 4 at left depicts a tension specimen subjected to a 

uniaxial loading. The logarithmic strain component 𝜀𝑧𝑧 is 

positive, and 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = −𝜈𝜀𝑧𝑧, where 𝜈 is Poisson’s ratio. 

For the situation in Fig. 4, 𝜀𝑖𝑗𝜀𝑖𝑗 = (1 + 2𝜈2)𝜀𝑧𝑧
2 , which gives 

the definition of the effective strain 𝜀,̅ viz., 

𝜀̅ = √
𝜀𝑖𝑗𝜀𝑖𝑗

1 + 2𝜈2
 .                                             (3.1) 

Note that for uniaxial tension 𝜀 ̅corresponds to the major 

uniaxial strain. 

Figure 4. A specimen subjected to 

                a uniaxial stress 𝜎𝑧𝑧. 

          Now, for three-dimensional linear elasticity, Hooke’s 

Law is 
 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
0 𝜀𝑘𝑙   ,          𝐶𝑖𝑗𝑘𝑙

0 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
 [ (1 − 2𝜈)𝐼𝑖𝑗𝑘𝑙 + 𝜈𝛿𝑖𝑗𝛿𝑘𝑙  ] ,                  (3.2) 

where 𝐸 is Young’s modulus. A reasonable extension of eqn. (3.2) to finite elasticity is to replace 

Young’s modulus with the secant modulus, and to take Poisson’s ratio to be constant. Thus, 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙   ,          𝐶𝑖𝑗𝑘𝑙 =
𝐸𝑠

(1 + 𝜈)(1 − 2𝜈)
 [ (1 − 2𝜈)𝐼𝑖𝑗𝑘𝑙 + 𝜈𝛿𝑖𝑗𝛿𝑘𝑙  ] .                  (3.3) 

In eqn. (3.3), 𝐸𝑠 is given by eqn. (2.8) with 𝜀 → 𝜀,̅ and 𝜎 = 𝜎(𝜀) in Sec. 2 is now 𝜎 = 𝜎(𝜀)̅. Also, 𝜎𝑖𝑗 is 

interpreted here as being the components of the true stress (𝜎𝑖𝑗 is the force per unit deformed area acting 

on the face whose normal is in the 𝑖–direction in the deformed configuration, with the force acting in the 

𝑗–direction of the deformed configuration), and 𝜀𝑖𝑗 are the components of the true strain. 
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 The gradients of eqn. (3.3), i.e., 𝜕𝜎𝑖𝑗 𝜕𝜀𝑘𝑙⁄ , are required for use in a finite element program. 

Consequently, we have the derivatives 

𝜕𝜀̅

𝜕𝜀𝑝𝑞
=

𝜀𝑝𝑞

(1 + 2𝜈2)𝜀̅
  ,          

d𝐸𝑠

d𝜀̅
=

1

𝜀̅
( 

d𝜎

d𝜀̅
− 𝐸𝑠 )  ,          

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝜀̅
=

1

𝐸𝑠

d𝐸𝑠

d𝜀̅
𝐶𝑖𝑗𝑘𝑙   ,                     

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝜀𝑝𝑞
=

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝜀̅

𝜕𝜀̅

𝜕𝜀𝑝𝑞
  ,          

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝜀𝑝𝑞
=

1

(1 + 2𝜈2)𝜎

d𝐸𝑠

d𝜀̅
𝐶𝑖𝑗𝑘𝑙𝜀𝑝𝑞  .                                    (3.4) 

Now, differentiating the first of eqns. (3.3) gives 

𝜕𝜎𝑖𝑗

𝜕𝜀𝑝𝑞
=

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝜀𝑝𝑞
𝜀𝑘𝑙 + 𝐶𝑖𝑗𝑘𝑙

𝜕𝜀𝑘𝑙

𝜕𝜀𝑝𝑞
                                                                                               (3.5) 

so that, from the last of eqns. (3.4), 

𝜕𝜎𝑖𝑗

𝜕𝜀𝑝𝑞
= 𝐶𝑖𝑗𝑘𝑙  [ 𝐼𝑘𝑙𝑝𝑞 +

1

(1 + 2𝜈2)𝜎

d𝐸𝑠

d𝜀̅
𝜀𝑘𝑙𝜀𝑝𝑞 ]  .                                                            (3.6) 

 

 We now turn attention to the nominal stress 𝑁𝑖𝑗, given by 

𝑁𝑘𝑗 = (det 𝐹)𝐹𝑘𝑖
−1𝜎𝑖𝑗 .                                                                                                             (3.7) 

The component 𝑁𝑖𝑗 is the force per unit undeformed area acting on the face whose normal is in the 

𝑖–direction in the undeformed configuration, with the force acting in the 𝑗–direction of the deformed 

configuration. Now, for square matrices in general, 

𝜕 det 𝑎

𝜕𝑎𝑖𝑗
= (det 𝑎)𝑎𝑖𝑗

−𝑇   ,          
𝜕𝑎𝑙𝑘

−1

𝜕𝑎𝑝𝑞
= −𝑎𝑙𝑝

−1𝑎𝑞𝑘
−1                                                               (3.8) 

so that the derivative of eqn. (3.7) is 

𝜕𝑁𝑘𝑗

𝜕𝐹𝑝𝑞
= 𝐹𝑞𝑝

−1𝑁𝑘𝑗 − 𝐹𝑘𝑝
−1𝑁𝑞𝑗 + (det 𝐹)𝐹𝑘𝑖

−1
𝜕𝜎𝑖𝑗

𝜕𝐹𝑝𝑞
  ,                                                            (3.9) 

where, by the chain rule, 

𝜕𝜎𝑖𝑗

𝜕𝐹𝑝𝑞
=

𝜕𝜎𝑖𝑗

𝜕𝜀𝑘𝑙

𝜕𝜀𝑘𝑙

𝜕𝑉𝑚𝑛

𝜕𝑉𝑚𝑛

𝜕𝐹𝑝𝑞
  .                                                                                                  (3.10) 

 

4. Equilibrium Equations 
 

Equilibrium is 

𝑁𝑖𝑗,𝑖 = 0  ,                                                                                                                               (4.1) 

where the comma denotes differentiation with respect to the coordinates of the undeformed configuration. 

Now, let 𝑢𝑗
∗ be an arbitrary, once-differentiable vector field (the so-called virtual displacement). Then, 

multiplying eqn. (4.1) by 𝑢𝑗
∗, i.e., 𝑢𝑗

∗𝑁𝑖𝑗,𝑖 = 0, and then by the product rule of differentiation, (𝑢𝑗
∗𝑁𝑖𝑗)

,𝑖
= 

= 𝑢𝑗,𝑖
∗ 𝑁𝑖𝑗 + 𝑢𝑗

∗𝑁𝑖𝑗,𝑖, eqn. (4.1) becomes 

𝑢𝑗,𝑖
∗ 𝑁𝑖𝑗 = (𝑢𝑗

∗𝑁𝑖𝑗)
,𝑖

 .                                                                                                            (4.2) 

Next, integrate eqn. (4.2) over the volume of the domain 𝑉, and use the Divergence Theorem to obtain 
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∫ 𝑢𝑗,𝑖
∗ 𝑁𝑖𝑗d𝑉

0

𝑉

= ∫ 𝑢𝑗
∗𝑇𝑗𝑑𝑆

0

𝑆

  ,                                                                                                   (4.3) 

which is the Principle of Virtual Work. In eqn. (4.3), 𝑆 is the bounding surface of domain 𝑉, and 

𝑇𝑗 = 𝑛𝑖𝑁𝑖𝑗  is the nominal traction vector (𝐧 is the outward-pointing unit normal vector on 𝑆). 

 

5. Brick Element and Finite Element Equations 
 

Figure 5 below depicts the 8–noded isoparametric finite element in 𝛏–space, where 𝜉𝑖 ∈ (−1,1). 

In terms of the functions 

𝑓0(𝑠) =
1

2
(1 − 𝑠)  ,          𝑓1(𝑠) =

1

2
(1 + 𝑠)  ,                                                                (5.1) 

 

 

the eight shape functions 𝑆𝐼 are given by the tensor product 

𝑆0 = 𝑓0(𝜉0)𝑓0(𝜉1)𝑓0(𝜉2) 𝑆1 = 𝑓0(𝜉0)𝑓0(𝜉1)𝑓1(𝜉2)

𝑆2 = 𝑓0(𝜉0)𝑓1(𝜉1)𝑓0(𝜉2) 𝑆3 = 𝑓0(𝜉0)𝑓1(𝜉1)𝑓1(𝜉2)
               

𝑆4 = 𝑓1(𝜉0)𝑓0(𝜉1)𝑓0(𝜉2) 𝑆5 = 𝑓1(𝜉0)𝑓0(𝜉1)𝑓1(𝜉2)

𝑆6 = 𝑓1(𝜉0)𝑓1(𝜉1)𝑓0(𝜉2) 𝑆7 = 𝑓1(𝜉0)𝑓1(𝜉1)𝑓1(𝜉2)
 .  (5.2) 

The mapping to 𝐱–space (in the undeformed configuration) is 

given by 

𝑥𝑖 = 𝑆𝐼𝑥𝑖
𝐼  ,                                                                                    (5.3) 

Figure 5. Brick element in 𝛏–space.  
 

where 𝑥𝑖
𝐼 are the coordinates of the nodes. Now, 

d𝑥𝑖 = 𝐴𝑖𝛼d𝜉𝛼  ,          𝐴𝑖𝛼 =
𝜕𝑥𝑖

𝜕𝜉𝛼
= 𝑆,𝛼

𝐼 𝑥𝑖
𝐼   ,          

𝜕𝜉𝛼

𝜕𝑥𝑖
= 𝐴𝛼𝑖

−1  ,                                   (5.4) 

so that volume integrals transform as 

∫(0)d𝑉x

0

𝑉x

= ∫(0)(det 𝐴)d𝑉ξ

0

𝑉ξ

  ,                                                                                     (5.5) 

where d𝑉x is a differential of volume in 𝐱–space and d𝑉ξ is a differential of volume in 𝛏 − space. 

Numerically, the volume integrations are evaluated with the 3–point Gauss-Legendre quadrature rule, 

which rule will integrate a fifth order polynomial exactly. Also consistent with eqns. (5.4), the (physical) 

gradients of the shape functions (in 𝐱–space) are, by the chain rule, 

𝑆,𝑖
𝐼 = 𝑆,𝛼

𝐼 𝐴𝛼𝑖
−1  .                                                                                                                         (5.6) 

 

 Turning attention now to the Principle of Virtual Work (4.3), interpolate the virtual displacement 

and its gradient through the element via 

𝑢𝑗
∗ = 𝑆𝐼𝑢𝑗

∗𝐼  ,          𝑢𝑗,𝑖
∗ = 𝑆,𝑖

𝐼𝑢𝑗
∗𝐼  ,                                                                                       (5.7) 

where 𝑢𝑗
∗𝐼 are the nodal values of 𝑢𝑗

∗. Substitution of eqns. (5.7) into eqn. (4.3) yields 

𝑢𝑗
∗𝐼 ∫ 𝑆,𝑖

𝐼𝑁𝑖𝑗d𝑉

0

𝑉

= 𝑢𝑗
∗𝐼 ∫ 𝑆𝐼𝑇𝑗𝑑𝑆

0

𝑆

  ,                                                                                    (5.8) 

or since 𝑢𝑗
∗𝐼 is arbitrary, 
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∫ 𝑆,𝑖
𝐼𝑁𝑖𝑗d𝑉

0

𝑉

= ∫ 𝑆𝐼𝑇𝑗𝑑𝑆

0

𝑆

  ,                                                                                                                                 (5.9) 

 

Equations (5.9) constitute a nonlinear system, so it is solved with Newton-Raphson iteration. The 

residual is 

𝑟𝑗
𝐼 = ∫ 𝑆,𝑖

𝐼𝑁𝑖𝑗d𝑉

0

𝑉

− ∫ 𝑆𝐼𝑇𝑗𝑑𝑆

0

𝑆

= 0 .                                                                                                               (5.10) 

Now, interpolate the displacement and its gradient through the element with  

𝑢𝑗 = 𝑆𝐼𝑢𝑗
𝐼  ,          𝑢𝑗,𝑖 = 𝑆,𝑖

𝐼𝑢𝑗
𝐼  ,                                                                                                                      (5.11) 

where 𝑢𝑗
𝐼 are the nodal values of the displacement. The components of the deformation gradient, and its 

derivative with respect to the nodal displacements, are then 

𝐹𝑝𝑞 = 𝛿𝑝𝑞 + 𝑢𝑝,𝑞 = 𝛿𝑝𝑞 + 𝑆,𝑞
𝐼 𝑢𝑝

𝐼   ,          
𝜕𝐹𝑝𝑞

𝜕𝑢𝑘
𝐽 = 𝑆,𝑞

𝐽 𝛿𝑝𝑘   .                                                                     (5.12) 

Thus, from the second of eqns. (5.12), 

𝜕𝑁𝑖𝑗

𝜕𝑢𝑘
𝐽 =

𝜕𝑁𝑖𝑗

𝜕𝐹𝑝𝑞

𝜕𝐹𝑝𝑞

𝜕𝑢𝑘
𝐽 =

𝜕𝑁𝑖𝑗

𝜕𝐹𝑘𝑙
𝑆,𝑙

𝐽
  .                                                                                                                    (5.13) 

The iteration equations are then 

𝜕𝑟𝑗
𝐼

𝜕𝑢𝑘
𝐽 Δ𝑢𝑘

𝐽
= 𝐽𝑗𝑘

𝐼𝐽
Δ𝑢𝑘

𝐽
= −𝑟𝑗

𝐼  ,          𝑢𝑘
𝐽

← 𝑢𝑘
𝐽

+ Δ𝑢𝑘
𝐽

  ,                                                                              (5.14) 

where the Jacobian is 

𝐽𝑗𝑘
𝐼𝐽 = ∫ 𝑆,𝑖

𝐼
𝜕𝑁𝑖𝑗

𝜕𝑢𝑘
𝐽 d𝑉

0

𝑉

= ∫ 𝑆,𝑖
𝐼

0

𝑉

𝜕𝑁𝑖𝑗

𝜕𝐹𝑘𝑙
𝑆,𝑙

𝐽d𝑉 ,                                                                                                 (5.15) 

which was obtained by differentiating eqn. (5.10) and by using eqn. (5.13). In the numerical calculations 

which follow in Sec. 6, the iteration was deemed converged when all Δ𝑢𝑘
𝐽
 satisfy 

|Δ𝑢𝑘
𝐽

| ≤ 10−4 max|𝑢𝑘
𝐽

|  .                                                                                                                            (5.16) 

For the stepping scheme described below in Sec. 6, convergence was generally achieved after about 10 

to 12 iterations. 

 

6. Numerical Example – Drawing of a Tension Specimen 
 

The above constitutive behavior and finite element formulation is used to solve the problem of 

necking and drawdown of a uniaxial tension specimen, which specimen is shown below in Fig. 6. The 

specimen is a square prism with dimensions 2𝑤 × 2𝑤 × 2𝐿, where 𝐿 = 3 in. Due to symmetry, only the 

first octant 𝑥𝑖 > 0 is analyzed numerically. To initiate the necking, the width of the specimen is taken as 

𝑤 =
𝑤0

2
[ 2 − 𝑓 − 𝑓 cos ( 

𝜋𝑥2

𝐿
 ) ]  ,                                                                                                              (6.1) 

with 𝑤0 = 0.25 in and 𝑓 = 0.05. In other words, 𝑤(𝐿) = 𝑤0 and 𝑤(0) = 0.95𝑤0. The boundary 

conditions on the first octant are 
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𝑢0 = 0  and  𝑇1 = 𝑇2 = 0  on  𝑥0 = 0  ,      𝑢1 = 0  and  𝑇0 = 𝑇2 = 0  on  𝑥1 = 0  ,                                  
𝑢2 = 0  and  𝑇0 = 𝑇1 = 0  on  𝑥2 = 0  ,      𝑢2 = 𝑈  and  𝑇0 = 𝑇1 = 0  on  𝑥2 = 𝐿  ,                      (6.2) 

𝑇𝑖 = 0  on  𝑥0 = 𝑥1 = 𝑤  .                                                                                                                                       
 

 

Finally, 𝜈 = 0.45 is used in the calculations. 
 

          The prescribed displacement on the top face of the 

specimen 𝑈 was applied to the finite element mesh in the 

following fashion. The solution is started out with a linear 

elastic solution. The initial guess to the first displacement 

step is then the linear elastic solution scaled to fit the 

boundary conditions for the first displacement step. For 

subsequent displacement steps, the initial guess for the 

solution is the (nonlinear) solution for the nodal 

displacements of the pervious displacement step (again, 

scaled to fit the boundary conditions for the current 

displacement step). The table below shows the 

displacement steps that were applied to the finite element 

mesh for the analysis, where 𝑈 is in inches. 

Figure 6. Uniaxial tension specimen.  
 

step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝑈 1.0 1.5 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 
 

14 15 16 17 18 19 20 21 22 23 24 25 26 27 

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 
 

Figure 7 below shows the nodes on the octant face 𝑥0 = 0 for 𝑈 = 0. The mesh used consists of a 

5 × 5 array of nodes in the 𝑥0𝑥1–plane, with 145 copies of these nodes stacked in the 𝑥2–direction, 

resulting in 3625 nodes and 2304 elements. 
 

  
Figure 7. Plan view of specimen at 𝑈 = 0 in. Figure 8. Plan view of specimen at 𝑈 = 2.0 in. 
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 Figures 8 through 10 show the deformed grid of nodes at various strain levels. Note that all the 

Figs. 7 through 10 possess the same scale. Notwithstanding, as Fig. 8 shows, at 𝑈 = 2.0 in, the necking 

has commenced, and as seen from Figs. 9 and 10, drawdown of the specimen is occurring. 
 

  
Figure 9. Plan view of specimen at 𝑈 = 3.3 in. Figure 10. Plan view of specimen at 𝑈 = 4.5 in. 

 

 Figures 11 and 12 show, respectively, the true strain component 𝜀22 and true stress component 

𝜎22 as functions of 𝑥2 (i.e., the axial coordinate in the undeformed configuration). The strain and stress 

values are from the centers of the column of elements which abut the 𝑥2–axis. As the figures show, the 

transition zone between the drawn and undrawn portions of the specimen is highly evident. 
 

  
Figure 11. Strain component 𝜀22 at 𝑈 = 4.5 in. Figure 12. Stress component 𝜎22 at 𝑈 = 4.5 in. 
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7. Closing Remarks 
 

 While the calculations easily may be carried out to higher strain levels, the viability of the 

calculational procedure has been demonstrated. Before implementing the procedures described above in 

Sec. 1 concerning the calculation of the tensors 𝑉 and 𝜀, the author originally tried solving for them with 

three-dimensional eigenproblems, which approach proved to be cumbersome and unreliable. One notes 

that this difficulty will not occur in two-dimensional analyses, as the eigenproblems are easily solved for 

explicitly. 

 


